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Abstract—In this paper, we use the novel method of using 
features extracted from the time-frequency image representation 
of a sound signal in an audio surveillance application. In 
particular, we investigate two image representations: linear 
grayscale and log grayscale. We first divide a sound signal into 
smaller frames and apply a windowing function. The absolute 
value of the Discrete Fourier Transform of each frame is then 
computed and normalized to get the intensity values for the 
linear grayscale image. The generation of the log grayscale image 
takes a similar approach but we take log power of the values 
before data normalization. Each image is then divided into blocks 
and central moments are computed in each block. We carry out 
experimentation under different noise conditions and varying 
signal-to-noise ratio using support vector machines for 
classification. Based on the classification accuracy, the linear 
grayscale image approach is found to be more noise robust than 
the log grayscale image approach. It was also found to perform 
better than using mel-frequency cepstral coefficients as features 
which is a common baseline feature in most sound recognition 
applications. 
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I.  INTRODUCTION 

Mel-frequency cepstral coefficients (MFCCs) have been 
used as a baseline feature in many sound recognition systems 
such as in [1-3]. However, MFCCs have been shown to 
perform poorly in noisy conditions [4]. As such, they are often 
complemented with other features but the addition of new 
features does not necessarily increase the classification 
accuracy. Some features are redundant and different 
combination of features need to be experimented with to 
determine the one that performs best as seen in [3]. 
Optimization techniques such as genetic algorithms can also be 
used for this purpose as in [5].   

However, in a recent study [6], features extracted from the 
time-frequency image, or spectrogram image, were shown to 
give promising results in sound event recognition under noisy 
conditions. Literature on this unique approach is limited 
though. In [7], time-frequency images of the sound signal were 
used for feature extraction in a hearing aid application. Eleven 
features were extracted for classifying four classes: speech, 
speech in noise, noise, and classical music. The original image 
is in grayscale but binary images were also created for feature 
extraction. Some of the features extracted are: sharpness in 

peak of histogram of the grayscale image, variation in 
frequency of the histogram, number of pixels that have 1 pixel 
line width across the y axis (frequency axis), mode value of the 
256 gray levels in the histogram, maximum frequency of 
histogram, mean value of histogram, number of isolated points 
in the binary image, number of white pixels in the binary 
image, and power difference between low frequency and high 
frequency. Five features are firstly used to classify between 
classical music and the others. The others is then classified as 
speech, speech in noise, and noise using the remaining six 
features. 

A similar approach was taken by Costa et al. [8] in music 
genre recognition. In their work, the audio signal is first 
converted to a spectrogram using time decomposition [9] and 
the gray level co-occurrence matrix (GLCM) [10] texture 
descriptors are extracted as features using a zoning technique 
with a total of 10 zones. The following seven descriptors were 
used in their work: entropy, correlation, homogeneity, third 
order momentum, maximum likelihood, contrast, and energy. 
A support vector machine (SVM) classifier with maximum 
voting strategy was used with three-fold cross-validation. The 
results are compared against those in [11] which takes an 
instance-based approach with feature vectors represented by 
short-term, low-level characteristics of the music audio signal. 
Only a marginal increase is seen in the average classification 
accuracy but results showed an improvement of 7 percentage 
points when the two methods were combined. 

In [6], however, a slightly different approach to the ones 
given above was used. The spectrogram images were 
partitioned into 9×9 blocks and second and third central 
moments were computed in each block. As such, the final 
feature vector for the grayscale image is 162-dimensional. The 
results under noisy conditions were shown to outperform those 
using MFCCs as features. 

In this paper, we propose to use the approach given in [6] 
for audio surveillance application in noisy conditions. 
However, when compared to the approach in [6], we propose to 
reduce the dimensionality of the feature vector using mean and 
standard deviation without compromising the classification 
accuracy. It is also important to point out the difference 
between sound event recognition as used in [6] and audio 
surveillance application as per the approach in [3]. In an audio 
surveillance application, a sound class has a number of 
different sound events. For example, shots fired from a rifle, 



 
Figure 1.  Steps in generating time-frequency images and determining 
MFCCs: (1) path for linear grayscale, (2) log grayscale, and (3) MFCCs  

 

shotgun, and machine gun are sound events but in an audio 
surveillance application they are treated as a single sound class 
such as gunshots. In some cases, the signal properties of 
subclasses in a particular class are similar to the subclasses in 
other classes but different to subclasses in its own class as 
mentioned in [3]. This creates interclass similarity and 
intraclass diversity, increasing the complexity of the problem 
as a result. 

The rest of this paper is organized as follows. Section II 
gives an overview of generating time-frequency images and 
feature extraction. Section III is on the experimentations we 
carried out and the corresponding results while conclusion and 
future recommendations are given in Section IV. 

II. FEATURE EXTRACTION 

The procedure for generating the time-frequency images is 
described below together with feature extraction and 
computation of MFCCs which we use for comparing the 
results. 

A. Grayscale Spectrogram 

The generation of the linear and log grayscale spectrograms 
takes path 1 and 2 respectively, as shown in Fig. 1. Firstly, the 
Discrete Fourier Transform (DFT) is applied to the windowed 
signal as 
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where N is the window length, 𝑥ሺ𝑛ሻ is the time-domain signal, 
𝑋௧ሺ𝑘ሻ  is the 𝑘௧௛  harmonic corresponding to the frequency 
𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄  for the 𝑡௧௛ frame, 𝐹௦ is the sampling frequency, 
and 𝑤ሺ𝑛ሻ is the window function. 

The linear and log values are then obtained as 
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These values are then normalized in the range ሾ0,1ሿ which 
gives the grayscale image intensity values. The normalization 
is given as 
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The linear and log grayscale images for a sound signal 
from one of the sound classes, construction, are given in Fig. 
2. 

Each image is then divided into blocks from which central 
moments are computed. The 𝑚௧௛  central moment for any 
given block of image can be determined as 
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where 𝐾  is the sample size or the number of pixels in the 
block, 𝐺௜ is the grayscale intensity value of the 𝑖௧௛ sample in 
the block, and 𝜇 is the mean grayscale intensity value of the 
block. 

B. MFCCs 

The extraction of MFCCs follows path 3. A triangular mel 
filterbank is applied to the linear spectra and the energy in each 
filter is added. The discrete cosine transform (DCT) of the log 
power of these values are then computed from which the 
MFCCs are obtained. 

III. EXPERIMENTAL EVALUATION 

A description of the database of sounds used in this work is 
given first followed by an overview of the noise conditions and 
the experimental setup. We then compare the classification 
accuracy using MFCCs and the time-frequency image-based 
features. We also present the confusion matrix to view the 
classification and misclassification of test samples from each 
class followed by the results for multi-conditional training. 

A. Description of Sound Database 

The sound database consists of 10 classes: alarms, children 
voices, construction, dog barking, footsteps, glass breaking, 
gunshots, horn, machines, and phone rings. The sound files are 
largely obtained from the Real World Computing Partnership 
(RWCP) Sound Scene database in Real Acoustic Environment 
[12] and the BBC Sound Effects library [13]. All signals in the 
database have 16-bit resolution and a sampling frequency of 
44100 Hz. The choice of the sound classes is similar to most 
other audio surveillance applications, [3] in particular. 

B. Noise Conditions 

The performance of the different features and classification 
methods are investigated under three different noise 
environments taken from the NOISEX-92 database [14]: 
speech babble, factory floor 1, and destroyer control room. The 
signals are resampled at 44100 Hz and the overall performance 
is measured in clean conditions and at 20dB, 10dB, and 0dB 
signal-to-noise (SNR).  

C. Experimental Setup 

For all experiments, features were extracted from a 
Hamming window of 512 points (11.61 ms) with 50% overlap. 
We compare the results using SVMs and K-Nearest Neighbor 
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Figure 2.  Grayscale images for a sound signal from construction sound class. (a) Linear grayscale image under clean conditions, (b) log grayscale image under 
clean conditions, (c) linear grayscale image at 0dB SNR with factory noise, and (d) log grayscale image at 0dB SNR with factory noise. 

 

(KNN) classification. Four multiclass SVM classification 
techniques are used: one-against-all (OAA) [15, 16] where the 
classifier that has the highest output function assigns the class, 
one-against-one (OAO) using a max-wins voting strategy [17], 
decision directed acyclic graph (DDAG) [18], and adaptive 
directed acyclic graph (ADAG) [19]. All results reported are 
using a nonlinear SVM with a Gaussian radial basis function 
kernel as it was found to give the best results during 
preliminary experiments. The classifier parameters were tuned 
using cross validation.  

The system is trained with two-third of the clean samples 
with all remaining data used for testing. Under multi-
conditional training, two-third data from clean samples and at 
0dB SNR are used for training while all remaining data is used 
for testing. For the MFCC method, the feature vector for each 
frame is 36-dimensional: 12 MFCCs with the 0௧௛ component 
excluded, using a 23-filterbank system, plus deltas and 
accelerations. The overall size of the feature vector for a signal 
is 36 ൈ 𝐹, where F is the number of frames in the sound signal, 
which is different in each case. After data normalization, the 
final feature vector is represented by concatenating the mean 
and standard deviation for each dimension. As such, the final 
feature vector is 72-dimensional. 

For the time-frequency image feature method, the image is 
divided into 9 ൈ 9  blocks and second and third central 
moments were computed in each block. We experimented with 

TABLE I.  CLASSIFICATION ACCURACY USING MFCCS - TRAINING 
USING CLEAN SAMPLES ONLY 

Classification 
Method 

MFCC 

Clean 20dB 10dB 0dB Average

OAA-SVM 98.43 90.81 69.03 41.56 74.96 
OAO-SVM 98.16 90.52 65.65 36.48 72.70
DDAG-SVM 98.16 91.28 63.43 35.58 72.11
ADAG-SVM 98.16 91.89 65.12 37.12 73.08
KNN 96.59 87.17 57.63 31.73 68.28

 

3 ൈ 3, 5 ൈ 5,  and 7 ൈ 7  blocks as well but best results were 
obtained with 9 ൈ 9 blocks. It was seen that the classification 
accuracy increased with an increase in the number of blocks 
but 9 ൈ 9 was the maximum that could be experimented with 
due to limitations in the length of the sound signal and the size 
of the image as a result. As per the approach in [6], the size of 
the concatenated feature vector for the grayscale spectrograms 
is 9 ൈ 9 ൈ 2 ൌ 162 where two refers to the second and third 
central moments extracted from each of the 81 blocks. 

We also experimented with concatenating the mean and 
standard deviation of the raw data along the row and column of 
the blocks to form the feature vector. Using this technique, the 
size of the feature vector for the grayscale spectrogram is 
9 ൈ 4 ൈ 2 ൌ 72, where four represents the two pairs of mean 
and standard deviation for the second and third central 
moment. The classification accuracy using the second approach
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TABLE II.  CLASSIFICATION ACCURACY USING TIME-FREQUENCY IMAGE METHODS - TRAINING USING CLEAN SAMPLES ONLY 

Classification 
Method 

Linear Grayscale Log Grayscale 

Clean 20dB 10dB 0dB Average Clean 20dB 10dB 0dB Average 

OAA-SVM 91.34 97.35 94.63 55.82 84.78 95.28 68.42 45.67 30.42 59.94 
OAO-SVM 91.86 90.52 85.30 49.66 79.34 95.54 66.99 44.53 29.10 59.04 
DDAG-SVM 91.60 91.25 86.03 47.42 79.08 95.54 66.38 44.07 28.58 58.64 
ADAG-SVM 91.34 90.93 87.23 51.76 80.31 95.54 67.40 44.88 29.75 59.39 

TABLE III.  CONFUSION MATRIX UNDER CLEAN CONDITIONS USING LINEAR GRAYSCALE IMAGE METHOD WITH OAA-SVM CLASSIFICATION 

  Alarms 
Children 
Voices 

Construction
Dog 

barking
Footsteps

Glass 
breaking

Gunshots Horn Machines 
Phone 
rings

Alarms 96.67 3.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Children voices 3.33 80.00 0.00 1.67 3.33 3.33 0.00 5.00 1.67 1.67 

Construction 0.00 3.33 96.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Dog barking 7.14 7.14 0.00 85.71 0.00 0.00 0.00 0.00 0.00 0.00 

Footsteps 0.00 7.02 0.00 0.00 92.98 0.00 0.00 0.00 0.00 0.00 

Glass breaking 0.00 5.00 0.00 0.00 0.00 95.00 0.00 0.00 0.00 0.00 

Gunshots 0.00 7.14 0.00 0.00 0.00 0.00 92.86 0.00 0.00 0.00 

Horn 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 

Machines 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 

Phone Rings 0.00 15.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 84.78 

Overall Classification Accuracy = 91.34

TABLE IV.  CONFUSION MATRIX AT 0dB SNR USING LINEAR GRAYSCALE IMAGE METHOD WITH OAA-SVM CLASSIFICATION 

  Alarms 
Children 
Voices 

Construction
Dog 

barking
Footsteps

Glass 
breaking

Gunshots Horn Machines 
Phone 
rings

Alarms 39.26 41.30 0.00 0.74 0.00 0.93 0.00 5.00 2.96 9.81 

Children voices 0.93 79.26 0.74 0.93 1.48 1.11 0.93 6.67 5.74 2.22 

Construction 1.48 22.59 71.11 0.00 0.00 0.00 2.59 0.37 0.37 1.48 

Dog barking 2.38 47.22 0.00 32.94 0.79 0.00 0.00 9.13 7.54 0.00 

Footsteps 0.00 21.44 0.19 0.00 71.54 0.19 0.00 5.46 0.00 1.17 

Glass breaking 0.00 5.00 4.44 0.00 0.00 89.44 0.00 1.11 0.00 0.00 

Gunshots 0.00 49.60 0.40 4.76 0.00 0.40 24.60 2.78 0.00 17.46 

Horn 0.00 33.33 0.00 0.00 1.01 0.00 0.00 62.63 2.02 1.01 

Machines 0.00 29.63 0.00 1.48 0.00 4.81 0.00 3.33 47.78 12.96 

Phone Rings 0.00 17.87 0.00 0.00 0.48 0.00 0.00 13.29 30.68 37.68 

Overall Classification Accuracy = 55.82

 

was slightly better and with the added advantage of reduced 
dimensionality for the feature vector, we present results using 
this method only. 

D. Results 

The classification accuracy with MFCCs are given in Table 
I. The minimum classification accuracy in clean conditions is 
98.16% for the SVM methods and is 96.59% for KNN. 
However, the classification accuracy reduces greatly with the 
addition of noise, especially at 10dB and 0dB SNR with the 
highest classification accuracy at 69.03% and 41.56%, 
respectively. In general, it was seen that the multiclass SVM 
classification methods produced better results than KNN so 
from here on we present the results using the multiclass SVM 
classification methods only. 

The classification accuracy using the time-frequency image 
feature approach is given in Table II. While the log grayscale 
method gives better classification accuracy under clean 
conditions, the linear grayscale method performs much better 
under noisy conditions. The same comparison also applies with 

the results obtained using MFCCs. As such, in terms of overall 
performance, the linear grayscale approach outperforms the log 
grayscale and MFCC methods. Also, in all the cases, OAA-
SVM gives a better overall performance than the other three 
methods. The results are especially better under noisy 
conditions. 

The log grayscale approach can be expected to perform 
better in clean conditions since taking log power reveals the 
details in the low power frequencies unlike the linear grayscale 
approach where only the dominant power frequencies are 
shown. This can be visualized in the linear grayscale and log 
grayscale images in Figure 2(a) and (b), respectively. However, 
the performance of the two representations changes with the 
addition of noise. The noise is more diffuse than the sound 
signal and its power affects most of the frequencies in the log 
grayscale image as shown in Figure 2(d). For the linear 
representation, the strong peaks of the sound are larger than the 
noise and remain largely unaffected with the addition of noise 
as can be seen in Figure 2(c). 



TABLE V.  CLASSIFICATION ACCURACY USING TIME-FREQUENCY IMAGE METHODS - MULTI-CONDITIONAL TRAINING 

Classification 
Method 

Linear Grayscale Log Grayscale 

Clean 20dB 10dB 0dB Average Clean 20dB 10dB 0dB Average 

OAA-SVM 91.34 96.59 96.33 91.43 93.92 92.39 80.52 84.69 85.83 85.86 
OAO-SVM 91.34 96.85 95.36 90.99 93.64 92.39 81.69 85.16 84.60 85.96 
DDAG-SVM 91.08 96.82 95.48 91.08 93.61 92.91 81.22 84.31 84.16 85.65 
ADAG-SVM 90.81 96.73 95.39 91.60 93.64 92.39 81.16 84.69 84.34 85.64 

 

Table III and IV present the confusion matrices for the 
OAA-SVM method under clean conditions and at 0dB SNR, 
respectively, for the linear grayscale image method. The 
confusion matrix allows the observation of the degree of 
confusion between the different classes which gives a better 
understanding of the classification performance when 
compared to the overall classification accuracy results given in 
Table II. The rows of the confusion matrix denote the sound 
classes that we want to classify and the columns denote the 
classified results. The values are given in percentage as number 
of correctly (or incorrectly) classified samples divided by 
number of test samples in the class. 

As an example, for the confusion matrix under clean 
conditions given in Table III, for the test samples from alarms, 
96.67% were correctly classified as alarms while the remaining 
3.33% were incorrectly classified as children voices. It can be 
said that test samples from children voices were more often 
misclassified than the other sound classes. Apart from dog 
barking, children voices is the only other class which has more 
than one confusion and it has confusion with all the other 
classes except construction and gunshots. We can also say that 
there is one sided confusion between construction and children 
voices where test samples from construction were misclassified 
as children voices but not vice-versa. There is also one sided 
confusion between gunshots and children voices. Horn and 
machines are the best performing classes with no 
misclassifications. 

While children voices has the lowest classification 
accuracy under clean conditions at 80.00%, interestingly, it has 
one of the highest classification accuracies at 0dB SNR at 
79.26%, as per the results in Table IV. It is only behind glass 
breaking, which at 89.44%, has the highest classification 
accuracy. Children voices also has the smallest reduction in the 
classification accuracy although it now has misclassifications 
with all the other classes. In addition, all the other classes have 
misclassifications in children voices and horn. Alarms, dog 
barking, gunshots, machines, and phone rings are the worst 
performing classes with a classification accuracy of less than 
50%. 

In addition, we present the classification accuracy with 
multi-conditional training in Table V. The linear grayscale 
approach once again gives the best overall classification 
accuracy which is with the OAA-SVM classification method. 
The most improved result using this approach is at 0dB SNR, 
from 55.82% when trained with clean samples only to 91.43% 
with multi-conditional training. However, the disadvantage of 
using multi-conditional training is that the number of training 
samples has increased fourfold which increases the training 
time 

IV. CONCLUSION 

The linear grayscale approach was found to be more robust 
than the log grayscale approach under noisy conditions. While 
the proposed method outperforms the conventional approach of 
using MFCCs as features, there is still room for improvement 
in the classification accuracy especially at low SNRs. In this 
work, we considered central moments as features but other 
distribution statistics could be explored in future work. 
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