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Abstract—In this work, we use the subband intensity histogram 
values extracted from the spectrogram image of sound signals to 
form the feature vector for sound classification in an audio 
surveillance application. We propose two features based on this 
approach. Firstly, we extract the histogram features from the 
short time Fourier transform spectrogram image of sound 
signals, which we refer as the spectral histogram feature (SHF). 
Secondly, we apply the mel-filter to the spectrogram image 
before histogram feature extraction which we refer as the mel-
spectral histogram feature (MSHF). When compared to baseline 
features from similar work, the SHF was shown to give 
significantly improved results in low SNR conditions with a 
higher overall classification performance. In addition, the MSHF 
produced even better results than the SHF with the added 
advantage of a lower feature dimension. 
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I.  INTRODUCTION 

A sound signal produces a certain texture which can be 
visualized using a spectrogram image, the intensity values of 
which represent the dominant frequency components against 
time. Capturing this information during feature extraction can 
improve the recognition rate of sounds in the presence of 
additive noise, provided the noise spectrum does not contain 
strong spectral peaks. This was demonstrated by the use of 
spectral subband centroids (SSCs) as supplementary features 
for improved robustness in speech recognition in [1]. A similar 
approach was taken for sound event recognition in [2], where 
the spectrogram image is divided into multiple blocks and 
second and third central moments are computed in each block 
which form the feature vector, referred as the spectrogram 
image feature (SIF). The SIF with reduced feature dimensions 
(RSIF) can be found in [3]. 

The intensity histogram of a spectrogram image also 
captures the distribution of spectral energy and is often used in 
digital image processing in a technique referred as histogram 
equalization (HEQ). A grayscale or a color image often has 
most of its intensity values concentrated within a particular 
range. HEQ tends to enhance the contrast of an input image by 
transforming its cumulative density function (CDF) so that the 
intensities are equally distributed. In some applications, it may 
be desired to match the CDF of an input image to a 
predetermined CDF or the CDF of a reference image. This 
primarily digital image processing technique has also been 

applied to feature vector components to compensate for 
nonlinear distortions caused by noise to the speech 
representation as in [4]. 

In this work, however, we use this technique as a feature 
extraction tool for classification of sounds in an audio 
surveillance application and propose two features. Firstly, we 
determine the histogram of intensity values in each frequency 
bin of the short time Fourier transform (STFT) spectrogram 
image and concatenate the histogram values to form the feature 
vector. We refer this as the spectral histogram feature (SHF). 
Secondly, we apply the mel-filter to the spectral values and use 
the histogram of intensity values in each channel to form the 
feature vector, which we refer as the mel-spectral histogram 
feature (MSHF).  

Similar approaches have been taken in image texture 
classification [5] and for robust speech classification [6]. We 
extend this technique for texture classification of sound signal 
spectrogram images and the robustness of the proposed 
features is tested in the presence of different noise 
environments at different signal-to-noise ratios (SNRs). The 
performance is measured against mel-frequency cepstral 
coefficients (MFCCs), the SIF, and the RSIF. 

The rest of this paper is organized as follows. Section II 
gives an overview of feature extraction. Section III is on the 
experimentations we carried out and the corresponding results 
while conclusions are given in Section IV. 

II. FEATURE EXTRACTION 

The procedure for feature extraction is given in the 
following subsections with reference to Fig. 1.  

A. MFCCs 

In computation of MFCCs, firstly, the discrete Fourier 
transform (DFT) is applied to the windowed signal as 
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where N is the window length, 𝑥ሺ𝑛ሻ is the time-domain signal, 
𝑋ሺ𝑘, 𝑡ሻ  is the 𝑘௧௛  harmonic corresponding to the frequency 
𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄  for the 𝑡௧௛ frame, 𝐹௦ is the sampling frequency, 
and 𝑤ሺ𝑛ሻ is the window function. 



 
 

 
Figure 1.  Steps in feature extraction: (1) path for MFCCs, (2) SIF and RSIF, 

(3) SHF, and (4) MSHF. 

 

The triangular filters are equally spaced on the mel-scale 
[7] and the adjacent filters overlap such that the lower and 
upper end of a filter are located at the center frequency of the 
previous and next filter, respectively, while the peak of the 
filter is at its center frequency. The output of the 𝑚௧௛ filter can 
then be determined as 
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where 𝐸ሺ𝑚, 𝑡ሻ represents the filter bank energies, 𝑀 is the total 
number of mel-filters, and 𝑉ሺ𝑚, 𝑘ሻ  is the normalized filter 
response. 

The MFCCs are then obtained as the discrete cosine 
transform (DCT) of the log compressed filter bank energies 
given as 
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which is evaluated from 𝑙 ൌ 1, 2, … , 𝐿 where 𝐿 is the order of 
the cepstrum. 

We also report results using linear-MFCCs where no 
compression is applied to the filter bank energies before 
computing the cepstral coefficients and which was shown to be 
more noise robust in [3]. 

B. Spectrogram-Derived Features 

We first give an overview of generating the spectrogram 
and mel-filtered spectrogram images. Feature extraction for 
SIF and RSIF is given next. Finally, feature extraction for SHF 
and MSHF is presented. 

1) Generating Grayscale Spectrogram 

The linear values are firstly obtained from the DFT values 
as 
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These values are then normalized in the range ሾ0,1ሿ which 
gives the grayscale spectrogram image intensity values. The 
normalization is given as 
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The computation of the mel-filtered spectrogram values 
takes a similar approach, however, instead of normalizing 
𝑆ሺ𝑘, 𝑡ሻ, the filter bank output values, as computed in (2), are 
utilized. 

Illustration of the two spectrogram images under clean 
conditions and with the addition of noise at 0dB SNR are given 
in Fig. 2. HSV color representations are shown for the 
grayscale values for better visualization. 

2) SIF and RSIF 

The central moments are extracted as features from the 
spectrogram images which form the SIF and the RSIF. For 
computing the central moments, the time-frequency image is 
divided into blocks and the 𝑣௧௛ central moment for any given 
block of image is then determined as 
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where 𝐾 is the sample size or the number of pixels in the block, 
𝐼௜ is the intensity value of the 𝑖௧௛ sample in the block, and 𝜇 is 
the mean intensity value of the block. 

3) SHF and MSHF 

Given a grayscale spectrogram image 𝐼ሺ𝑘, 𝑡ሻ  with 𝐺 
grayscale intensity levels, the intensity histogram can be 
determined as 
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where ℎሺ𝑘, 𝑔ሻ is a matrix with the count of grayscale intensity 
value 𝑔  in the frequency bin 𝑘,  𝑔 ൌ 1, 2, … , 𝐺  and 𝑘 ൌ
0, 1,… , 𝑁 2⁄ െ 1 , and 𝑁௧  is the number of frames or pixels 
along the horizontal. The concatenation of the histogram values 
from each frequency bin forms the SHF. 

For the MSHF, (7) can be modified as 
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where 𝑚 ൌ 1, 2, … ,𝑀.  

It should be noted that in the event 𝐺 ൌ 2, the grayscale 
image is essentially converted to a binary image. 
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Figure 2.  Spectrogram images for a sound signal from construction sound class. (a) Spectrogram image under clean conditions, (b) spectrogram image at 0dB 
SNR with factory noise, (c) mel-filtered spectrogram image under clean conditions, and (d) mel-filtered spectrogram image at 0dB SNR with factory noise. 

 

III. EXPERIMENTAL EVALUATION 

A description of the sound database used in this work is 
given first followed by an overview of the noise conditions and 
the experimental setup. We then present results using the 
baseline features which includes MFCCs and the spectrogram 
image features, SIF and RSIF. Finally, results using the 
proposed SHF and MSHF are presented. 

A. Sound Database 

The sound database has a total of 1143 files belonging to 10 
classes: alarms, children voices, construction, dog barking, 
footsteps, glass breaking, gunshots, horn, machines, and phone 
rings. The sound files are largely obtained from the Real World 
Computing Partnership (RWCP) Sound Scene database in Real 
Acoustic Environment [8] and the BBC Sound Effects library 
[9]. All signals in the database have 16-bit resolution and a 
sampling frequency of 44100 Hz. More details about the sound 
database and its comparison with that used in other similar 
work can be found in [3]. 

B. Noise Conditions 

The performance of the different features is investigated 
under three different noise environments taken from the 
NOISEX-92 database [10]: speech babble, factory floor 1, and 
destroyer control room. The signals are resampled at 44100 Hz 
and the overall performance is measured in clean conditions 
and at 20dB, 10dB, 5dB, and 0dB SNRs. 

C. Experimental Setup 

For all experiments, signal processing is carried out using a 
Hamming window of 512 points (11.61 ms) with 50% overlap. 
Support vector machine (SVM) is used for classification where 
the classification accuracy is given in percentage as number of 
correctly classified test samples divided by the total number of 
test samples. Being a binary classifier, we use the one-against-
all (OAA) method [11] for multiclass classification where the 
classifier that has the highest output function assigns the class. 
In [3], the OAA method was shown to give the best overall 
performance when compared against three other multiclass 
classification methods and against the k-nearest neighbor 
(kNN) classifier.  

All results are reported using a nonlinear SVM with a 
Gaussian radial basis function kernel as it was found to give the  
 

TABLE I.  CLASSIFICATION ACCURACY USING BASELINE FEATURES 

Feature Clean 20dB 10dB 5dB 0dB Average

Log-MFCC 98.43 92.83 73.14 57.57 43.31 73.05 

Linear-MFCC 99.21 93.53 86.09 70.87 47.16 79.37 

SIF 91.60 91.34 88.80 67.19 40.51 75.89 

RSIF 92.13 92.04 89.33 78.57 53.37 81.08 

 
 
best results. The classifier parameters, refer to [3], were tuned 
using cross validation where, instead of maximizing the 
classification accuracy under each noise condition, samples 
from all noise conditions were used at once to get the best 
overall classification accuracy. For all experimentations, the 
classifier is trained with two-third of the clean samples with the 
remaining one-third data used for testing under clean and noisy 
conditions. 

D. Results and Discussions 

1) Baseline Features 

The first baseline method uses MFCCs as features. The 
feature vector for each frame is 39-dimensional: 13 MFCCs 
using a 20-filter bank system, plus deltas, and accelerations. 
The overall size of the feature vector for a signal is 39 ൈ 𝑁௧. 
We present results using log-MFCCs and linear-MFCCs. For 
log-MFCCs, we apply logarithmic compression to the filter 
bank energies before computing the cepstral coefficients while 
no compression is applied in the case of linear-MFCCs. After 
data normalization, a 78-dimensional final feature vector is 
formed by concatenating the mean and standard deviation for 
each dimension. 

The second baseline method uses the SIF and the RSIF. For 
the SIF, the spectrogram image is divided into 9 ൈ 9 blocks 
and second and third central moments are computed in each 
block. These values are then concatenated into a column vector 
which forms a 162-dimensional feature vector. For the RSIF, 
the mean and standard deviation of the central moment values 
along the row and column of the blocks are concatenated to 
form a 72-dimensional final feature vector.  

The classification accuracy values using the baseline 
features are given in Table I. MFCCs give the highest 
classification accuracy under clean conditions and at 20dB  
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Figure 3.  Average classification accuracy value for MSHF with increasing 

number of mel-filter banks 

 

SNR with linear-MFCCs proving to be much more noise robust 
than log-MFCCs. However, the RSIF gives superior 
performance at 10dB, 5dB, and 0dB SNRs and a better overall 
classification accuracy than MFCCs and the SIF. A detailed 
analysis of the results can be found in [3]. 

2) SHF and MSHF 

We now present results using the proposed histogram 
features. For the SHF, the histogram of the intensity values are 
computed in each frequency bin and concatenated to form the 
feature vector. In addition, we use only two histogram bins in 
each subband since it gave the best results. In general, it was 
observed that the average classification accuracy decreased as 
the number of histogram bins increased. With 𝑁 ൌ 512, the 
total number of frequency bins is 256 and with two histogram 
bins in each frequency bin, the final feature vector for the SHF 
has a dimension of 512. For the MSHF, the upper and lower 
cut-off frequencies are set as 𝐹௦ 2ൗ  and 𝐹௦ 𝑁ൗ , respectively. We 
also consider various number of filter banks in the range 24 to 
64 at intervals of 4 where the feature vector in each case is 
given as 2 ൈ𝑀. The average classification accuracy value for 
MSHF with increasing values of 𝑀 is plotted in Fig. 3. The 
highest average classification accuracy was achieved at 𝑀 ൌ
48. 

The results for SHF and MSHF ሺ𝑀 ൌ 48ሻ  are given in 
Table II. Looking at the results for SHF, there has been an 
increase in the average classification accuracy when compared 
to RSIF, the best performing baseline feature. The SHF gives 
lower classification accuracy than RSIF under clean conditions 
and at 20dB and 10dB SNRs, however, there is significant 
improvement in the classification accuracy at 5dB and 0dB 
SNRs. 

Furthermore, at 87.10%, the average classification accuracy 
using MSHF is significantly better than all baseline features. In 
addition, it is also better than the results for SHF. Similar to the 
SHF, the MSHF outperforms the RSIF at 5dB and 0dB SNRs.  
 

TABLE II.  CLASSIFICATION ACCURACY USING SHF AND MSHF 

Feature Clean 20dB 10dB 5dB 0dB Average

SHF 87.40 87.31 86.88 85.65 72.97 84.04 

MSHF 92.39 92.39 91.69 86.26 72.79 87.10 

 
 

However, unlike the SHF, the MSHF gives marginally better 
performance than RSIF at 10dB SNR and comparable results 
under clean conditions and at 20dB SNR. In addition, MSHF 
has the added advantage of a significantly lower feature 
dimension when compared to SHF. With 𝑀 ൌ 48, the MSHF 
feature dimension is 96 , which is 2.67  times less than the 
SHF. 

IV. CONCLUSION 

The proposed histogram features, SHF and MSHF, were 
shown to outperform the baseline features in low SNR 
conditions. Out of the two features, the MSHF gave the best 
overall classification accuracy and the feature vector dimension 
is also much lower than the SHF. While the MSHF generally 
performs much better than all the baseline features in the 
presence of noise, it is not able to match the classification 
accuracy of MFCCs under clean conditions which is its only 
disadvantage. 
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