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Abstract—In this paper, we use the cochleagram image of sound 
signals for time-frequency analysis and feature extraction, 
instead of the conventional spectrogram image, in an audio 
surveillance application. The signal is firstly passed through a 
gammatone filter which models the auditory filters in the human 
cochlea. The filtered signal is then divided into small windows 
and the energy in each window is added and normalized which 
gives the intensity values of the cochleagram image. We then 
divide the cochleagram image into blocks and extract central 
moments as features. Using two feature vector representation 
methods, the results show significant improvement in overall 
classification accuracy when compared to results from literature 
employing similar feature extraction and representation 
techniques but using spectrogram images. The most improved 
results were at low signal-to-noise ratios. 
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I.  INTRODUCTION 

Features extracted from the spectrogram image of sound 
signals have shown to be more noise robust in sound 
recognition than conventional features such as mel-frequency 
cepstral coefficients (MFCCs). In [1], after dividing the 
spectrogram image into blocks, central moments are extracted 
as features for robust sound event recognition, referred as the 
spectrogram image feature (SIF). In [2], we reduced the 
dimension of the SIF by using the mean and standard deviation 
of the central moment values along the row and column of the 
blocks, without compromising the classification accuracy, 
which we referred as the reduced spectrogram image feature 
(RSIF). 

The spectrogram image is probably the most commonly 
used tool in time-frequency analysis of signals in both speech 
and sound recognition applications. The spectrogram image is 
generally formed by dividing the signal into smaller sections, 
referred as frames, and then applying discrete Fourier 
transform (DFT) to the windowed frames. The horizontal and 
vertical axis give time and frequency information, respectively. 
The frequency components are equally spaced along the 
vertical with constant bandwidth. However, most sound signals 
have greater frequency components in the lower frequency 
range and the information in these frequency components get 
compressed in this time-frequency representation. 

A cochleagram [3] is similar to a spectrogram but a 
cochleagram uses the human auditory model for determining 

the center frequencies and bandwidth. A gammatone filter is 
often used for this purpose which is a linear filter modeling the 
frequency selectivity property of the human cochlea. It has 
more frequency components in the lower frequency range with 
smaller bandwidth and fewer frequency components in the 
higher frequency range with higher bandwidth. The most 
commonly used cochlea model is that proposed by Patterson et. 
al. [4]. It is a series of bandpass filters where the bandwidth is 
given by equivalent rectangular bandwidth (ERB). An efficient 
implementation of the gammatone filter bank has been 
provided in [5] which has been used for extracting gammatone 
cepstral coefficients (GTCCs) in both speech [6] and non-
speech [7] recognition applications. 

Time-frequency analysis and feature extraction using 
cochleagram images have a number of applications in areas of 
signal processing and pattern recognition. For example, 
features were extracted from cochleagram images in [8] in 
trying to improve the robustness in speech recognition. In [9], 
cochleagram features outperform a combination of common 
acoustic features in voice activity detection. Similar approach 
is also taken in [10] for audio separation purposes. 

In this paper, we explore the applicability of cochleagram-
based time-frequency analysis of sound signals for 
classification of sounds in an audio surveillance application. 
We test the effectiveness of the proposed approach with central 
moments as features and using two feature vector 
representation techniques from spectrogram analysis, SIF and 
RSIF, which, for the cochleagram, we refer as cochleagram 
image feature (CIF) and reduced cochleagram image feature 
(RCIF), respectively. We compare the results for the proposed 
features against MFCCs and the conventional spectrogram-
derived features, SIF and RSIF, in different noise environments 
and at different signal-to-noise ratios (SNRs). 

The rest of this paper is organized as follows. Section II 
gives an overview of time-frequency image formation and 
feature extraction. Section III is on experiments, results, and 
discussions while the conclusions are given in Section IV. 

II. FEATURE EXTRACTION 

In this work, we consider linear time-frequency images 
only since it showed greater robustness to logarithmic time-
frequency images in [1, 2]. We first present the steps in 
generating the spectrogram and cochleagram images and then 
outline the procedure for feature extraction. 
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Figure 1.  Spectrogram and cochleagram images for a sample sound signal. (a) Linear spectrogram image under clean conditions, (b) linear spectrogram image at 
0dB SNR with factory noise, (c) linear cochleagram image under clean conditions, and (d) linear cochleagram image at 0dB SNR with factory noise. 

 
A. Spectrogram 

In generating the spectrogram image, firstly, the DFT is 
applied to the windowed signal as 
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where N is the window length, 𝑥ሺ𝑛ሻ is the time-domain signal, 
𝑋ሺ𝑘, 𝑡ሻ  is the 𝑘௧௛  harmonic corresponding to the frequency 
𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄  for the 𝑡௧௛ frame, 𝐹௦ is the sampling frequency, 
and 𝑤ሺ𝑛ሻ is the window function. 

The linear values are obtained as 
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These values are then normalized in the range ሾ0,1ሿ which 
gives the grayscale spectrogram image intensity values. The 
normalization is given as 
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Illustration of spectrogram images, color representations 
are shown for the grayscale values for better visualization, 
under clean conditions and with the addition of noise at 0dB 
SNR can be found in Fig. 1(a) and (b), respectively. 

B. Cochleagram 

The formation of the cochleagram requires gammatone 
filter banks which are a series of bandpass filters the impulse 
response for which can be given as [4] 
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where 𝐴 is the amplitude, 𝑗 is the order of the filter, 𝐵 is the 
duration of the impulse response or filter bandwidth, 𝑓௖ is the 
center frequency of the filter, 𝜙 is the phase, and 𝑟 is the time. 

The ERB is used to describe the bandwidth of each cochlea 
filter in [4]. ERB is a psychoacoustic measure of the auditory 
filter width at each point along the cochlea and can be given as 
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where 𝑄௘௔௥ is the asymptotic filter quality at high frequencies 
and 𝐵௠௜௡  is the minimum bandwidth for low frequency 
channels. The bandwidth of a filter can then be approximated 
as 𝐵 ൌ 1.019 ൈ 𝑓௖,ாோ஻ . The three commonly used ERB filter 
models are given by Glasberg and Moore [11] (𝑄௘௔௥ ൌ 9.26, 
𝐵௠௜௡ ൌ 24.7, and 𝑝 ൌ 1), Lyon’s cochlea model as given in 
[12] (𝑄௘௔௥ ൌ 8, 𝐵௠௜௡ ൌ 125, and 𝑝 ൌ 2), and Greenwood [13] 
(𝑄௘௔௥ ൌ 7.23, 𝐵௠௜௡ ൌ 22.85, and 𝑝 ൌ 1). 

The human cochlea has thousands of hair cells which 
resonate at their characteristic frequency and at a certain 
bandwidth. In [5], the mapping between center frequency and 
cochlea position is determined by integrating the reciprocal of 
(5) with a step factor parameter to indicate the overlap between 
filters. This can then be inverted to find the mapping between 
filter index and center frequency which can be given as 
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where 𝑚 ൌ 1,2, … , 𝑀, 𝑀 is the number of gammatone filters, 
𝑓௛  is the maximum frequency in the filter bank, and 𝑠 is the 
step factor given as 
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where 𝑓௟ is the minimum frequency in the filter bank. 

We use a 4th order gammatone filter with four filter stages 
and each stage a 2nd order digital filter as given in [5]. The 
gammatone filter was implemented using the Auditory 
Toolbox for Matlab [14]. After filtering the signal with the 
gammatone filter, the energy in the windowed signal for each 
frequency component is added which can be given as 
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where 𝑥ොሺ𝑚, 𝑛ሻ is the gammatone filtered signal, 𝐶ሺ𝑚, 𝑡ሻ is the 
𝑚௧௛  harmonic corresponding to the center frequency 𝑓௖௠  for 
the 𝑡௧௛ frame. 

These values are then normalized using (3) to get the 
grayscale cochleagram image intensity values. Illustration of 
cochleagram images under clean conditions and with the 
addition of noise at 0dB SNR can be found in Fig. 1(c) and (d), 
respectively, using the same sound signal as the spectrogram 
images of Fig. 1(a) and (b). 

C. Central Moments 

The central moments are extracted as features from the 
time-frequency images. For computing the central moments, 
the time-frequency image is divided into blocks and the 𝑣௧௛ 
central moment for any given block of image is determined as 
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where 𝐾 is the sample size or the number of pixels in the block, 
𝐼௜ is the intensity value of the 𝑖௧௛ sample in the block, and 𝜇 is 
the mean intensity value of the block. 

III. EXPERIMENTAL EVALUATION 

A description of the sound database used in this work is 
given first followed by an overview of the noise conditions and 
the experimental setup. We then present results using the 
baseline features which includes MFCCs and the spectrogram 
image features, SIF and RSIF. Finally, we present results using 
cochleagram image features, CIF and RCIF. 

A. Sound Database 

The sound database has a total of 1143 files belonging to 10 
classes: alarms, children voices, construction, dog barking, 
footsteps, glass breaking, gunshots, horn, machines, and phone 
rings. The sound files are largely obtained from the Real World 
Computing Partnership (RWCP) Sound Scene database in Real 
Acoustic Environment [15] and the BBC Sound Effects library 
[16]. All signals in the database have 16-bit resolution and a 
sampling frequency of 44100 Hz. More details about the sound 
database and its comparison with that used in other similar 
work can be found in [2]. 

B. Noise Conditions 

The performance of the different features is investigated 
under three different noise environments taken from the 
NOISEX-92 database [17]: speech babble, factory floor 1, and 
destroyer control room. The signals are resampled at 44100 Hz 
and the overall performance is measured in clean conditions 
and at 20dB, 10dB, 5dB, and 0dB SNRs. 

C. Experimental Setup 

For all experiments, signal processing is carried out using a 
Hamming window of 512 points (11.61 ms) with 50% overlap. 
Support vector machine (SVM) is used for classification where 
the classification accuracy is given in percentage as number of 
correctly classified test samples divided by the total number of 
test samples. Being a binary classifier, we use the  
 

TABLE I.  CLASSIFICATION ACCURACY USING BASELINE FEATURES 

Feature Clean 20dB 10dB 5dB 0dB Average

Log-MFCC 98.43 92.83 73.14 57.57 43.31 73.05 

Linear-MFCC 99.21 93.53 86.09 70.87 47.16 79.37 

SIF 91.60 91.34 88.80 67.19 40.51 75.89 

RSIF 92.13 92.04 89.33 78.57 53.37 81.08 

 

 

one-against-all (OAA) method [18] for multiclass classification 
where the classifier that has the highest output function assigns 
the class. In [2], the OAA method was shown to give the best 
overall performance when compared against three other 
multiclass classification methods and against the k-nearest 
neighbor (kNN) classifier. 

All results are reported using a nonlinear SVM with a 
Gaussian radial basis function kernel as it was found to give the 
best results. The classifier parameters, refer to [2], were tuned 
using cross validation where, instead of maximizing the 
classification accuracy under each noise condition, samples 
from all noise conditions were used at once to get the best 
overall classification accuracy. For all experimentations, the 
classifier is trained with two-third of the clean samples with the 
remaining one-third data used for testing under clean and noisy 
conditions.  

D. Results and Discussions 

1) Baseline Features 

The first baseline method uses MFCCs as features. The 
feature vector for each frame is 39-dimensional: 13 MFCCs 
using a 20-filterbank system, plus deltas, and accelerations. 
The overall size of the feature vector for a signal is 39 ൈ 𝑁௧, 
where 𝑁௧  is the number of frames in the signal, which is 
different in each case depending on the length of the signal. We 
present two sets of results using this method, log-MFCCs and 
linear-MFCCs. For log-MFCCs, we apply logarithmic 
compression to the filter bank energies before computing the 
cepstral coefficients while no compression is applied in the 
case of linear-MFCCs. After data normalization, a 78-
dimensional final feature vector is formed by concatenating the 
mean and standard deviation for each dimension. 

The second baseline method uses features derived from the 
spectrogram image of the sound signal, namely the SIF and the 
RSIF. For the SIF, the spectrogram image is divided into 9 ൈ 9 
blocks and second and third central moments are computed in 
each block. These values are then concatenated into a column 
vector which forms a 162-dimensional feature vector. For the 
RSIF, the mean and standard deviation of the central moment 
values along the row and column of the blocks are 
concatenated to form a 72-dimensional final feature vector.  

The classification accuracy values using the baseline 
features are given in Table I. MFCCs give the highest 
classification accuracy under clean conditions and at 20dB 
SNR with linear-MFCCs proving to be much more noise robust 
than log-MFCCs. However, the RSIF gives superior 
performance at 10dB, 5dB, and 0dB SNRs and a better overall 
classification accuracy than MFCCs and the SIF. A detailed 



TABLE II.  CLASSIFICATION ACCURACY USING CIF AND RCIF 

ERB Filter Model 
CIF RCIF 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

Glasberg and Moore [11] 92.13 91.78 90.73 85.74 63.08 84.69 94.75 94.58 94.14 89.68 65.44 87.72 

Lyon [12] 91.60 91.25 90.46 83.38 58.88 83.11 95.01 94.40 93.35 89.59 65.44 87.56 

Greenwood [13] 93.18 93.09 92.21 89.06 63.95 86.30 94.75 94.75 94.58 91.69 69.38 89.03 

 

 

analysis of the results can be found in [2]. 

2) Cochleagram Image Features 

For obtaining the CIF and RCIF, we follow the same 
procedure as SIF and RSIF, respectively, but using a 
cochleagram image instead of spectrogram image. For best 
comparison, we create a similar experimental setup as the 
spectrogram image features. To get the same time-frequency 
image resolution, we use 256 gammatone filters ሺ𝑀 ൌ 256ሻ 
and the same window size ሺ𝑁 ൌ 512ሻ . The classification 
accuracy values using CIF and RCIF for the three ERB filter 
models are given in Table II. 

When compared to the SIF and the RSIF, the proposed CIF 
and RCIF generally show improvement in classification 
accuracy under all noise conditions, respectively. In both cases, 
there is significant improvement in the overall classification 
accuracy with the most improved results under noisy 
conditions, 10dB, 5dB, and 0dB SNRs, in particular. The 
Glasberg and Moore and the Lyon ERB filter models give 
comparable classification accuracy but the best overall 
performance for both feature sets is achieved using 
Greenwood’s model. Highest classification accuracy is once 
again achieved using the reduced feature method, RCIF, with 
an average classification accuracy of 89.03%. It gives an 
improvement in classification accuracy of 2.62%, 2.71%, 
5.25%, 13.12%, and 16.01% over the RSIF under clean 
conditions and at 20dB, 10dB, 5dB, and 0dB SNRs, 
respectively. As such, the improvement in the classification 
accuracy increases as the SNR decreases with the most 
improved results at 0dB SNR, increasing from 53.37% to 
69.38%. Similar to the RSIF, the RCIF is not able to match the 
classification accuracy of MFCCs under clean conditions. 
However, it gives marginally better classification accuracy at 
20dB SNR and significantly higher classification accuracy at 
10dB, 5dB, and 0dB SNRs. 

IV. CONCLUSION 

Cochleagram-based time-frequency representation of a 
sound signal, which utilizes a gammatone filter, was found to 
be more effective for feature extraction than the spectrogram 
image. When compared to the spectrogram features, SIF and 
RSIF, the corresponding cochleagram features, CIF and RCIF, 
showed significant improvement in overall classification 
performance using all three ERB filter models. The 
performance of the cochleagram image features was seen to be 
especially better at low SNRs with the most improved results at 
0dB SNR for both feature sets.  
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