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Abstract 

This paper builds on the technique of feature extraction from the spectrogram image of sound 
signals for automatic sound recognition. The spectrogram image is divided into blocks and 
statistical distributions are extracted from each block as features. However, when compared 
to related work, we reduce the dimensionality of the feature vector using mean and standard 
deviation values along the row and column of the blocks without compromising the 
classification accuracy. We demonstrate the technique in an audio surveillance application 
and evaluate the performance using four common multiclass support vector machine (SVM) 
classification techniques, one-against-all, one-against-one, decision directed acyclic graph, 
and adaptive directed acyclic graph. Experimentation was carried out using an audio database 
with 10 sound classes, each containing multiple subclasses with intraclass diversity and 
interclass similarity in terms of signal properties. Under noisy conditions, the proposed 
reduced spectrogram image feature (RSIF) produced significantly better classification 
accuracy than the conventional log compressed mel-frequency cepstral coefficients (MFCCs) 
and marginally better classification accuracy than linear MFCCs, which does not utilize any 
compression. The linear spectrogram image representations for feature extraction and the 
one-against-all multiclass SVM classification method were found to be the most noise robust. 
In addition, significantly improved results were obtained under noisy conditions when the 
RSIF is combined with linear MFCCs.  

Keywords: audio surveillance, noise robust, sound recognition, reduced spectrogram image 
feature, support vector machines 

1.0 Introduction 

Unlike speech recognition, which has been a highly researched area over the past few 
decades, research in sound recognition, a closely related area, is relatively new. Sound 
recognition can cover a wide range of applications. Some of these include content-based 
audio classification such as for application in multimedia [1] or more specifically in music 
genre classification [2] and musical instrument sound classification [3], hearing aid [4], 
environmental sound recognition [5], audio surveillance [6], and respiratory sound 
classification [7, 8]. 

While most initial work in sound recognition concentrated on content-based audio 
classification for multimedia applications, sound event recognition has also gained attention 
in recent years. Surveillance and security systems are common applications for such work 
such as security monitoring in a room [9] and medical telemonitoring [10]. While these are 
examples of standalone audio surveillance systems, which is the aim of this work, audio and 
video surveillance systems could also be integrated for a more holistic approach to the 
development of surveillance systems. Video surveillance systems have been around for many 
years but they have limitations such as limited field of view, challenging external conditions, 
and relatively expensive computation and data storage. An automatic sound recognition 
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(ASR) system could be used to complement a video-based surveillance system such as in 
public transports [11] and surveillance in banks [12].  

Sound recognition is essentially a pattern recognition problem and most of the techniques 
involved are inspired from speech recognition. The two key components underlying the 
robustness of an ASR system are feature selection and choice of classifier. Mel-frequency 
cepstral coefficients (MFCCs) have been used a baseline feature in many sound recognition 
systems and are often complemented with other features for improved performance. 
However, conventional MFCCs, which applies log compression to the filter bank energies 
before computing the cepstrum coefficients, has been shown to give poor performance in the 
presence of noise [13-15]. In a recent work, though, statistical moments derived as features 
from the spectrogram image of sound signals, referred as the spectrogram image feature 
(SIF), was shown to give relatively good results under noisy conditions in sound event 
recognition [14].  

In this work, which is a continuation of our earlier work in [16, 17], we use features derived 
from the spectrogram image of sound signals for classification of sounds in an audio 
surveillance application. In addition, we use this feature in combination with linear MFCCs, a 
special case of root compressed MFCCs which has shown to be more noise robust than the 
conventional MFCCs in speech recognition [15]. We test the robustness of the proposed 
feature set at different noise levels and different noise environments using support vector 
machines (SVMs) for classification.  

The remaining of this paper is organized as follows. Section 2 covers related work in sound 
recognition and, in particular, audio surveillance. Section 3 is on feature extraction and 
feature vector formation. In section 4, we give an overview of SVMs and the multiclass 
classification techniques for SVMs. Experimental results and discussions are given in section 
5 followed by conclusion and recommendations in section 6. 

2.0 Related Work 

One of the early work in the area of content-based audio classification and retrieval, which 
also found commercial success, was called Muscle Fish [1] (www.muslcefish.com). It used 
nearest neighbor (NN) method of classification using low-level features such as loudness, 
pitch, brightness, and bandwidth. This research was extended in [18] where the nearest 
feature line (NFL) method of classification and the introduction of MFCCs as features 
showed superiority when compared to [1]. Two other similar work but using SVMs for 
classification can be found in [19, 20]. 

Environmental sound recognition is another area of sound recognition. It poses a greater 
challenge when compared to most other sound recognition applications since an 
environmental sound can comprise of a number of different sounds within the environment 
which can be present in different combinations at any given time. An example of 
environmental sound recognition can be found in [5] where fourteen environment types are 
considered. A combination of MFCCs and matching pursuit (MP) [21] features gives the 
highest accuracy at 83.9% using Gaussian mixture model (GMM) for classification. 

The techniques in audio surveillance systems are similar to content-based audio classification 
and environmental sound recognition. In [22], a scream and gunshot detection and localizing 
system is presented using MFCCs and other temporal, spectral, spectral distribution, and 
correlation-based features. In [23], features based on pitch range (PR) and MFCCs are 
proposed. The audio database has four abnormal events: glass breaking, dog barking, scream, 
and gunshot; and three normal events: engine noise, rain, and restaurant noise. SVM, radial 
basis function (RBF) neural networks, and NN classifiers are experimented with but best 
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results are achieved using SVM for classification and the combined feature set. SVMs are 
also used for classification of seven audio events: screaming, crying, speech (male), speech 
(female), laughing, knocking, and explosion in [24]. Both time and frequency domain features 
were studied but only MFCCs and its derivatives were found to be more useful.  

One of the more comprehensive piece of work in audio surveillance is given in [6] where 
large feature dimensions were considered for classification using one-class SVM (1-SVM) 
[25]. The features considered in this work are divided into time-domain features: zero-
crossing rate (ZCR) and short-time energy (STE); frequency-domain features: spectral 
centroid (SC) and spectral roll-off (SR); linear prediction, perceptual linear prediction, and 
cepstral features: linear prediction cepstral coefficients (LPCCs), perceptual linear prediction 
(PLP), and MFCCs; and wavelet-based features, derived from wavelet coefficients. The 
sound database consists of 1015 sound files from 9 classes: human screams, gunshots, glass 
breaking, explosions, door slams, dog barks, phone rings, children voices, and machines. The 
highest classification accuracy achieved is 96.89% under clean conditions and 93.33%, 
89.22%, 82.80%, and 72.89% with the best performing feature set at 20dB, 10dB, 5dB, and 
0dB signal-to-noise ratio (SNR), respectively, with 70% of clean data used for training and 
the remaining for testing. 

In [14], a slightly different approach is taken where features extracted from spectrogram 
image of sound signals are used for sound event recognition. The spectrogram images are 
partitioned into blocks and second and third central moments are computed in each block as 
features. For experimentation, 60 sound categories are used to give a selection of collision, 
action, and characteristics sounds. Each class has 80 files of which 50 files are randomly 
selected for training and 30 files for testing. Four noise types: speech babble, destroyer room 
control, factory floor 1, and jet cockpit 1 from NOISEX-92 [26] database are added at 20dB, 
10dB, and 0dB SNR to test the robustness of the proposed method. The best results for 
training with clean signals were between 74-77% at 0dB SNR for the four noise types. 

However, literature using this unique approach is limited, especially with an application in 
the presence of noise. Spectrogram derived features were used in a hearing aid application in 
[4]. While more than thirty features were extracted, eleven features were chosen through 
correlation analysis for classifying four classes: speech, speech in noise, noise, and classical 
music. The original image is in grayscale but binary images are also created for feature 
extraction. In [27], features derived from spectrogram image texture analysis are used in 
music genre recognition. For environmental sound recognition in [28], spectrogram derived 
features were shown to give higher results than MFCCs, linear prediction coefficients (LPC), 
and MP. In addition, log-Gabor filtered spectrogram images are used for feature extraction in 
[29]. 

In this work, we largely follow the SIF technique proposed in [14] for automatic sound 
recognition in an audio surveillance application. However, we propose a method to reduce 
the SIF dimension using the mean and standard deviation of the extracted features along the 
rows and columns of the blocks. We refer this as the reduced spectrogram image feature 
(RSIF). In addition, concatenating two or more set of features for improved classification 
accuracy is a common practice in ASR systems. Conventional MFCCs have been shown to 
produce good results under clean conditions and are often combined with other features for 
improved performance, such as in [5, 6, 23]. However, the log compression used in 
conventional MFCCs has been shown to reduce its performance in the presence of noise. As 
such, root compressed MFCCs are proposed in [15]. We propose to combine the RSIF with 
linear MFCCs, which uses the upper limit of the root value, to potentially achieve even 
greater classification accuracy than the individual features. 
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The approach taken towards the problem of audio surveillance is similar to [6] where a sound 
class has a number of different sound events. For example, shots fired from a rifle, shotgun, 
and machine gun are examples of different sound events, which would be treated as three 
different sound classes as per the approach in [14], but are taken as a single sound class, such 
as gunshots, in [6]. In some cases, the signal properties of subclasses in one particular class 
are similar to the subclasses in other classes and different to subclasses in its own class. This 
creates interclass similarity and intraclass diversity, increasing the complexity of the problem 
as a result.  

A total of 10 classes are selected to show the robustness of the proposed method. This is more 
than most other work in the area of audio surveillance such as seven classes in [12, 23, 24], 
and nine classes in [6]. It can generally be said that the classification accuracy decreases with 
an increase in the number of classes as summarized in [5] in relation to the problem of 
environmental sound recognition. 

As far as the choice of the classifier is concerned, in most sound recognition systems, such as 
[6, 19, 20, 23, 24], SVM has been preferred. In [20], the performance of SVM was found to 
be better than KNN which was in turn shown to give better results than GMM. Some other 
literature where the performance of SVM has been compared against other classifiers but 
with similar conclusions can be found in [23, 30, 31].  

SVM is a relatively new classifier which has especially been found to give good results when 
using low training data. Initially intended as a binary classifier, a number of methods have 
since been developed to use SVMs for multiclass classification. The most common technique 
in solving the multiclass problem is to reduce it into multiple binary classification problems. 
Four of the widely used methods based on this approach are: one-against-all (OAA), one-
against-one (OAO), decision directed acyclic graph (DDAG), and adaptive directed acyclic 
graph (ADAG).  

The performance of the multiclass SVM classification methods have been compared in a 
number of literature such as in [32, 33]. The difference in the classification accuracy in most 
cases is minimal and, as such, the preference of one technique over the others is largely based 
on faster training and evaluation times. However, most such analysis are limited to clean 
conditions and it is unclear which approach is more suitable for classification under noisy 
conditions. In this work, we compare the performance of OAA, OAO, DDAG, and ADAG 
multiclass SVM classification methods under different noise conditions and SNR. We 
evaluate the performance of each method using its classification accuracy and also compare 
the training and evaluation times. 

3.0 Feature Extraction 

3.1 Reduced Spectrogram Image Feature  

3.1.1 Grayscale Spectrogram 

To generate the grayscale spectrogram, firstly, the DFT is applied to the windowed signal as 
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where N is the window length, 𝑥ሺ𝑛ሻ is the time-domain signal, 𝑋ሺ𝑘, 𝑡ሻ is the 𝑘௧௛ harmonic 
corresponding to the frequency 𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄  for the 𝑡௧௛ frame, 𝐹௦ is the sampling 
frequency, and 𝑤ሺ𝑛ሻ is the window function. 

The linear and log values are then obtained as 
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   , ,LinearS k t X k t  (2) 

   , log , .LogS k t X k t  (3) 

These values are normalized in the range ሾ0,1ሿ which gives the grayscale image intensity 
values. The normalization is given as 
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Feature extraction using cepstrogram images wasn’t considered in this work since this 
approach was shown to give relatively poor results in [14].  

3.1.2 Color Mapping 

The linear and log grayscale intensity values are then quantized and mapped onto the red, 
green, and blue (RGB) monochrome components which is a generalization of the pseudo-
color mapping procedure as mentioned in [14]. There are many color spaces which can be 
used for this purpose and in this work one of the common color spaces, the HSV color space, 
was used. The mapping of the grayscale image to the monochrome image can be given as 

      1 2, , , ,...c c NQ k t f G k t c c c c    (5) 

where 𝑄௖ is a monochrome image (R, G, or B), c is the quantization regions, and f is a 
nonlinear mapping function. 

The linear and log spectrogram images for a sound signal from construction sound class are 
given in Figure 1. 
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Figure 1: Spectrogram images of a sound signal from construction sound class. (a) Linear 
grayscale image under clean conditions, (b) linear grayscale image at 0dB SNR with factory 
noise, (c) log grayscale image under clean conditions, (d) log grayscale image at 0dB SNR 
with factory noise, (e) linear quantized image under clean conditions, (f) linear quantized 

image at 0dB SNR with factory noise, (g) log quantized image under clean conditions, and 
(h) log quantized image at 0dB SNR with factory noise 
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3.1.3 Feature Extraction and Representation 

The spectrogram image is essentially a matrix of data formed by stacking the spectrum values 
from each frame side-by-side as depicted in Figure 2 for a grayscale image. Each image is 
then divided into blocks and central moments are computed as features. The 𝑣௧௛ central 
moment for any given block of image can be determined as 
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where 𝑁௦ is the sample size or the number of pixels in the block, 𝐼௦ is the intensity value of 
the 𝑠௧௛ sample in the block, and 𝜇 is the mean intensity value of the block. 

 

Figure 2: Proposed RSIF data representation. Note that 𝐼ሺ𝑏, 𝑏ሻ is a matrix of image intensity 
values for the block in the 𝑏௧௛ row and 𝑏௧௛ column, 𝑚௩ሺ𝑏, 𝑏ሻ is the 𝑣௧௛ central moment for 

the block in the 𝑏௧௛ row and 𝑏௧௛ column, and 𝜇ோ௕, 𝜎ோ௕ and  𝜇஼௕, 𝜎஼௕ are the mean and 
standard deviation of the extracted feature for the blocks in the 𝑏௧௛ row and 𝑏௧௛ column, 

respectively, 𝑏 ൌ 1, 2, … , 𝐵. 

An important consideration after feature extraction is feature vector representation. We 
considered two approaches for feature data representation. The first approach is same as in 
[14] where raw feature data from all the blocks are concatenated to form the final feature 
vector for each signal. If the number of blocks along the row and column of the spectrogram 
image is same and is given as 𝐵, the dimension of the final feature vector using this approach 
is 𝐵ଶ. While this gives a reasonable size feature dimension for small values of 𝐵, the feature 
vector dimension can become extremely large as the number of blocks increases. In [14], the 
images are divided into 9 ൈ 9 blocks. For the grayscale spectrograms, the final feature 
dimension with two features, second and third central moments, computed in each block is 
9 ൈ 9 ൈ 2 ൌ 162. For the quantized images, with three quantization regions, this increases to 
9 ൈ 9 ൈ 2 ൈ 3 ൌ 486.  

The feature data representation method that we propose is to concatenate the mean and 
standard deviation of the central moment values along the row and column of the image 
blocks as depicted in Figure 2. This gives a feature vector dimension of 𝐵 ൈ 4. While this 
approach gives a higher feature dimension than the approach in [14] for 𝐵 ൏ 4, it gives a 
lower feature dimension for 𝐵 ൐ 4. Using the case of 9 ൈ 9 blocks once again, the feature 
dimension is 9 ൈ 4 ൈ 2 ൌ 72 for the grayscale spectrogram and 9 ൈ 4 ൈ 2 ൈ 3 ൌ 216 for the 
quantized spectrogram, which is 2.25 times smaller than in [14]. However, the preference of 
one feature data representation method over another is largely dependent on the classification 
accuracy which is discussed in section 5.5. 
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3.2 MFCCs 

MFCCs are computed using the DFT power coefficients. The power coefficients are firstly 
filtered using a triangular filter bank. In conventional MFCCs, the filter bank energies are log 
compressed before applying discrete cosine transform (DCT). The root compressed MFCCs 
are computed in a similar manner but root compression is applied to the filter bank energies 
instead of log compression. Root compressed MFCCs can be determined as [15] 
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where  𝐿 is the order of the cepstrum, 𝐸௙ is the output of the 𝑓௧௛ filter bank, 𝑓 ൌ 1, 2, … , 𝐹, 
and 𝛾 is the root value used to compress the filter bank energies, 0 ൏ 𝛾 ൑ 1. When 𝛾 ൌ 1, the 
filter bank energies are uncompressed and we refer this as linear MFCCs. 

3.3 Other Features 

Other time and frequency domain features that we have considered in this work, such as zero-
crossing rate (ZCR), short-time energy (STE), sub-band energy (SBE), spectral centroid (SC) 
or brightness, bandwidth (BW), spectral roll-off (SR), are as defined [16]. 

4.0 Support Vector Machine 

4.1 Basic Theory 

A support vector machine determines the optimal hyperplane to maximize the distance 
between any two given classes. It has been well described in many literature, such as in [34-
36], and is summarized here. Starting with a case of linearly separable dataset, consider a set 
of 𝑙 training samples belonging to two classes, a positive class and a negative class, given as 
ሼሺ𝐱ଵ, 𝑦ଵሻ, … , ሺ𝐱௟, 𝑦௟ሻሽ, where 𝐱௜ ∈ 𝑅ௗ is a 𝑑-dimensional feature vector representing the 𝑖௧௛ 
training sample, and 𝑦௜ ∈ ሼെ1, ൅1ሽ is the class label of 𝐱௜. There can be many possible 
hyperplanes but the two classes can be said to be optimally separated by the hyperplane if the 
separation distance, or margin, between the closest vector, known as support vectors, to the 
hyperplane is maximal. 

Any hyperplane in the feature space can be described by the equation 𝐰 ∙ 𝐱 ൅ 𝑏 ൌ 0, where 
𝐰 ∈ 𝑅ௗ is a normal vector to the hyperplane and 𝑏 is a constant. Selecting two hyperplanes, 
𝐰 ∙ 𝐱 ൅ 𝑏 ൌ ൅1 and 𝐰 ∙ 𝐱 ൅ 𝑏 ൌ െ1 such that the data points are separated with no data 
between them in the margin region, the aim then is to maximize the distance between them. 
The distance between these two hyperplanes is given as 𝟐

‖𝐰‖ൗ , therefore, ‖𝐰‖ has to be 

minimized. To prevent the data points from falling into the margin, the following constraints 
are added: 𝑦௜ሺ𝐰 ∙ 𝐱௜ ൅ 𝑏ሻ ൒ 1. For mathematical convenience, and without altering the 
solution, ‖𝐰‖ is substituted with ½‖𝐰‖ଶ which becomes a quadratic programming problem. 
The optimization problem can be solved under the given constraints by the saddle point of the 
Lagrange functional. For ease of computation, the primal problem is transformed to a dual 
problem using classical Lagrangian duality which gives the solution 
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i i i
i

y


 w x  (8) 

where 𝛼௜ are the non-negative Lagrange multipliers. The 𝐱௜ for which 𝛼௜ ൐ 0 are called the 
support vectors which lie exactly on the margin satisfying 𝑦௜ሺ𝐰 ∙ 𝐱௜ ൅ 𝑏ሻ ൌ 1, 𝑖 ൌ 1, 2, … 𝑙. 
The offset can then be determined as 
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i ib y  w x  (9) 

using any support vector or averaged over all support vectors. 

However, there is no such hyperplane for linearly nonseparable problems to classify every 
training sample correctly. In such a case, the optimization can be generalized by introducing 
the concept of soft margin [35] implying a hyperplane separating most but not all the points. 
Introducing non-negative slack variables 𝜉௜ which measure the degree of misclassification of 
data 𝐱௜ and a penalty function ∑ 𝜉௜௜ , the optimization is a trade-off between a large margin 
and a small error penalty. The optimization problem can be solved as before and the solution 
is similar to the separable case except for a modification to the Lagrange multipliers: 0 ൑
𝛼௜ ൑ 𝐶, 𝑖 ൌ 1, 2, … 𝑙, where 𝐶 is a penalty or tuning parameter to balance the margin and 
training error. 

In applications where linear SVM does not give satisfactory results, nonlinear SVM is 
suggested which aims to map the input vector 𝐱 to a higher dimensional space 𝐳 through 
some nonlinear mapping 𝜙ሺ𝐱ሻ chosen a priori to construct an optimal hyperplane. The kernel 
trick [34] is applied to create the nonlinear classifier where the dot product is replaced by a 
nonlinear kernel function 𝐾൫𝐱௜, 𝐱௝൯ which computes the inner product of the vectors 𝜙ሺ𝐱௜ሻ 
and 𝜙൫𝐱௝൯. 

The typical kernel functions are: polynomial, 𝐾൫𝐱௜, 𝐱௝൯ ൌ ൫𝐱௜ ∙ 𝐱௝ ൅ 1൯
௥
 where r is the degree 

of the polynomial; Gaussian RBF, 𝐾൫𝐱௜, 𝐱௝൯ ൌ exp ቀെฮ𝐱௜ െ 𝐱௝ฮ
ଶ

/2𝜎ଶቁ, where 𝜎 ൐ 0 is the 

width of the Gaussian function; and multilayer perception, 𝐾൫𝐱௜, 𝐱௝൯ ൌ tanh൫𝑎ଵ൫𝐱௜ ∙ 𝐱௝൯ െ
𝑎ଶ൯, where 𝑎ଵ and 𝑎ଶ are two given parameters known as scale and offset respectively. 

The classifier for a given kernel function with the optimal separating hyperplane is then given 
as 
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4.2 Multiclass Classification 

OAA is probably the earliest of the multiclass SVM classification techniques [36, 37]. For an 
𝑀-class problem, 𝑀 binary SVM classifiers are constructed and evaluated where each 
classifier separates one class from all the other classes combined. That is, the 𝑖௧௛ classifier is 
trained with all the training samples from the 𝑖௧௛ class as positive labels and all the remaining 
samples as negatives labels. During classification, a sample 𝐱 is classified in the class with 
the largest value of the decision function 

    
1,2,...,

arg max .i i

i M
f b


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The disadvantage of OAA-SVM is the high mismatch in the training samples between the 
positive and negative classes while some literature [38, 39] also shows that the training and 
evaluation times can be high. 

The OAO approach distinguishes between every pair of classes and classification is done 
using a max-wins voting strategy [40]. For an 𝑀-class problem, OAO-SVM constructs and 
evaluates 𝑀ሺ𝑀 െ 1ሻ 2⁄  classifiers where each SVM is trained on samples from two classes at 
a time, that is, using training samples from the 𝑖௧௛ and 𝑗௧௛ class. During classification, the 
class label of a test sample is predicted as 
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While OAO-SVM has much more uniform training samples in the positive and negative 
classes when compared to OAA-SVM, its disadvantage is the inefficiency of classifying data 
because the number of SVM classifiers grows super linearly with an increase in the number 
of classes.  

DDAG [38] and ADAG [41] are also based on classification between pair of classes but 
utilize a decision tree structure in the testing phase. Similar to OAO-SVM, 𝑀ሺ𝑀 െ 1ሻ 2⁄  
nodes are created during the training phase but only 𝑀 െ 1 nodes are evaluated during 
testing. 

5.0 Experimental Evaluation 

A description of the sound database used in this work is given first followed by an overview 
of the noise conditions and experimental setup. We then present results using MFCCs and the 
RSIF. The final set of results use a combination of features. 

5.1 Description of the Sound Database 

The sound database consists of 10 classes mostly taken from the Real World Computing 
Partnership (RWCP) Sound Scene database in Real Acoustic Environment [42] and the BBC 
Sound Effects library [43]. All signals in the database have 16-bit resolution and a sampling 
frequency of 44100 Hz. A summary of the selected sound classes, total number of sound 
files, and total duration is shown in Table I. 

Table I: Overview of sound classes 

  Class  
Number of 
Subclasses 

Total Number 
of Files 

 Total 
Duration (s)

Alarms A 6 180 83.4533 
Children Voices B 6 180 131.9286 
Construction C 3 90 26.2251 
Dog Barking D 3 84 22.3042 
Footsteps E 6 171 24.0566 
Glass Breaking F 2 60 107.3296 
Gunshots G 3 84 8.9500 
Horn H 3 66 27.4115 
Machines I 3 90 56.8423 
Phone Rings J 6 138 119.7996 

Total 1143 608.3008 

 

The choice of sound classes is similar to that of other audio surveillance applications, [6] in 
particular. Alarm sounds in the database include car alarms, electronic alarms, and siren. 
Children voices include children crying and screaming. Construction sounds are sawing, 
metal hammering, and pneumatic drilling. The footstep sounds include those from metal and 
wooden stairs and on pavement. The three types of machine sounds are machine hum, motor, 
and warble. The phone rings class includes cellphone and telephone ringtones. 

The database has both harmonic and impulsive sounds and an irregular number of sound files 
which are important in testing out the robustness of the system. It is also important to have 
some degree of intraclass diversity and interclass similarity for this purpose and this is 
demonstrated using K-means clustering [44]. The centroid of each of the subclasses was 
determined and these were grouped into 10 clusters using K-means clustering algorithm. The 
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results for these are shown in Table II where 𝐴஻ and 𝐴஺ show the subclasses in class 𝐴 before 
and after applying K-means clustering, respectively.  

As an example, there are six type of alarm sounds (class 𝐴஻) which have been labeled as 
𝐴ଵ, 𝐴ଶ, … , 𝐴଺. However, after applying K-means clustering, the six subclasses fall in five 
different clusters: 𝐴ଵ and 𝐴ଶ in class 𝐴஺, 𝐴ହ in class 𝐵஺, 𝐴ସ in class 𝐶஺, 𝐴ଷ in class 𝐷஺, and 𝐴଺ 
in class 𝐻஺. This means that only 𝐴ଵ and 𝐴ଶ have similar signal properties. There are three 
subclasses in construction and all fall in different clusters, 𝐵஺, 𝐶஺, and 𝐺஺, unlike the 
subclasses from dog barking, glass breaking, and horn which all fall in the same cluster, 𝐷஺, 
𝐹஺, and 𝐻஺, respectively, but have been combined with subclasses from other classes. 

Table II: Demonstration of intraclass diversity and interclass similarity using K-means 
clustering 

Normal Cluster After K-means Clustering 

Class Subclasses Class Subclasses 

AB A1 A2 A3 A4 A5 A6 AA A1 A2 J2 J3 J4 J6  

BB B1 B2 B3 B4 B5 B6 BA A5 B1 B2 B5 C1 J1  
CB C1 C2 C3 CA A4 C2 I1     

DB D1 D2 D3       DA A3 B3 B4 B6 D1 D2 D3

EB E1 E2 E3 E4 E5 E6 EA E3 E4 E5 E6    

FB F1 F2         FA F1 F2 G3     
GB G1 G2 G3       GA C3 G1 G2     

HB H1 H2 H3 HA A6 H1 H2 H3 J5   

IB I1 I2 I3       IA I2       

JB J1 J2 J3 J4 J5 J6 JA E1 E2 I3     

 

5.2 Noise Conditions 

The performance of the different features and classification methods are investigated under 
three different noise environments taken from the NOISEX-92 database [26]: speech babble, 
factory floor 1, and destroyer control room. The signals are resampled at 44100 Hz and the 
performance is measured in clean conditions and at 20dB, 10dB, 5dB, and 0dB SNR.  

5.3 Experimental Setup 

For all experiments, features are extracted from a Hamming window of 512 points (11.61 ms) 
with 50% overlap. The system is trained with two-third of the clean samples with the 
remaining one-third samples used for testing under clean conditions and with the addition of 
noise.  

Classification accuracy, given in percentage as number of correctly classified test samples 
divided by the total number of test samples, is compared using four multiclass SVM 
classification techniques, OAA, OAO, DDAG, and ADAG. All results are reported using a 
nonlinear SVM with a Gaussian RBF kernel as it was found to give the best results during 
preliminary experiments. The penalty parameter 𝐶 and 𝜎 for the Gaussian RBF kernel were 
tuned using cross validation. For DDAG and ADAG, the class order list in alphabetical order 
was used. Results using KNN classification with Euclidean distance measure are also 
presented for comparison. 

5.4 Results with MFCCs 

With MFCCs, the feature vector for each frame is 39-dimensional: 13 MFCCs, using a 20-
filterbank system, plus deltas and accelerations. The overall feature vector dimension for a 
signal is 39 ൈ 𝑇, where 𝑇 is the total number of frames in the sound signal, which is different 
in each case depending on the length of the signal. After data normalization, the feature 
vector is represented by concatenating the mean and standard deviation for each feature 
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which seems to be the most commonly used technique as seen in [14, 18, 19]. As such, the 
final feature vector is 78-dimensional. We also experimented with the feature data 
representation technique given in [6] but found it to be less effective. 

We experimented with both log compressed MFCCs and root compressed MFCCs. For root 
compressed MFCCs, various values of 𝛾 were experimented with and best results were 
obtained for values of 𝛾 closer to 1. However, linear MFCCs, 𝛾 ൌ 1, were found to be more 
effective when combined with other features, results for which are presented in section 5.6. 
As such, only results using log MFCCs and linear MFCCs are presented here. 

The classification accuracy with log and linear MFCCs is given in Table III. For log MFCCs, 
the classification accuracy in clean conditions is 98.43% for the SVM methods and 96.85% 
for KNN. However, the classification accuracy reduces greatly with the addition of noise, 
especially at 10dB, 5dB, and 0dB SNR with the highest classification accuracy at 73.14%, 
57.57%, and 43.31%, respectively, all of which are using OAA-SVM classification. With 
linear MFCCs, significant improvement can be seen in the classification accuracy at 10dB, 
5dB, and 0dB SNR using all classification methods. 

Table III: Classification accuracy using MFCCs 

Classification 
Method 

Log MFCCs Linear MFCCs 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

OAA-SVM 98.43 92.83 73.14 57.57 43.31 73.05 99.21 93.53 86.09 70.87 47.16 79.37 
OAO-SVM 98.43 92.04 63.52 47.51 33.42 66.98 98.69 94.84 83.38 64.57 43.31 76.96 
DDAG-SVM 98.43 93.09 61.07 45.67 33.25 66.30 98.69 94.75 83.03 64.30 42.26 76.61 
ADAG-SVM 98.43 93.00 63.60 49.26 35.70 68.00 98.69 95.36 83.55 64.92 42.52 77.01 
KNN 96.85 91.25 58.79 43.83 32.20 64.58 97.38 92.56 83.90 73.32 57.83 81.00 

 

In both set of results, the OAA-SVM classification method gives the best average 
classification accuracy of the four multiclass SVM classification methods. While there isn't a 
significant difference in the classification accuracy using the four methods in clean conditions 
and at 20dB SNR, the OAA-SVM classification method performs much better than the other 
methods at 10dB, 5dB, and 0dB SNR. It also outperforms KNN in the case of log MFCCs but 
KNN gives slightly better performance with linear MFCCs. 

5.5 Results with RSIF  

We now present the results using the RSIF. With the RSIF, the spectrogram image is divided 
into 9 ൈ 9 blocks and second and third central moments were computed in each block. We 
experimented with 3 ൈ 3, 5 ൈ 5, and 7 ൈ 7 blocks as well but best results were obtained with 
9 ൈ 9 blocks. It was seen that the classification accuracy increased with an increase in the 
number of blocks but 9 ൈ 9 was the maximum that could be experimented with due to 
limitations in the length of the sound signal and the size of the spectrogram image as a result.  

The classification accuracy using RSIF for the grayscale and quantized spectrograms is given 
in Table IV(a) and Table IV(b), respectively. There is a significant improvement in the 
average classification accuracy when compared with log MFCCs, from 73.05% to 81.66% 
with the linear quantized spectrogram. Also, the most improved results are under noisy 
conditions at 10dB, 5dB, and 0dB SNR. At 81.08%, the average classification accuracy using 
the linear grayscale spectrogram is only slightly below the linear quantized spectrogram 
despite a three times smaller feature dimension. The OAA-SVM classification method once 
again gives the best overall results in all cases except with the log grayscale spectrogram, 
where all the multiclass SVM classification methods give comparable performance. As with 
linear MFCCs, which performs only marginally below the linear spectrogram methods, the 
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KNN classification method was more effective with the linear spectrograms and only slightly 
below the OAA-SVM classification method in terms of overall performance. 

Table IV(a): Classification accuracy using RSIF – grayscale spectrograms 

Classification 
Method 

Linear Grayscale Spectrogram Log Grayscale Spectrogram 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

OAA-SVM 92.13 92.04 89.33 78.57 53.37 81.08 96.06 72.00 50.48 38.93 31.32 57.76 
OAO-SVM 92.13 86.70 82.33 72.79 48.29 76.45 97.11 73.05 50.22 38.93 30.80 58.02 
DDAG-SVM 91.86 87.40 82.50 66.67 44.97 74.68 97.38 72.62 48.91 38.15 30.62 57.53 
ADAG-SVM 90.81 86.70 82.15 71.92 48.29 75.98 97.90 74.45 50.57 39.55 31.50 58.79 
KNN 87.93 87.23 83.90 78.48 56.61 78.83 93.44 64.57 39.28 30.27 24.23 50.36 

 

Table IV(b): Classification accuracy using RSIF – quantized spectrograms 

Classification 
Method 

Linear Quantized Spectrogram Log Quantized Spectrogram 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

OAA-SVM 95.80 95.28 88.89 72.79 55.56 81.66 99.74 84.08 59.93 51.01 40.59 67.07 
OAO-SVM 94.75 92.83 81.10 63.52 41.12 74.66 99.21 83.90 57.22 46.54 36.92 64.76 
DDAG-SVM 94.23 93.44 82.41 63.34 38.76 74.44 99.21 83.64 56.08 45.93 36.66 64.30 
ADAG-SVM 95.01 94.93 85.04 65.18 44.09 76.85 99.21 84.25 56.26 46.19 36.92 64.57 
KNN 93.70 93.61 92.13 75.85 47.16 80.49 97.64 80.66 57.83 44.88 34.65 63.13 

 

A time-frequency image represents two-dimensional data which makes it more useful for 
feature extraction when compared to the one-dimensional data available in time-domain and 
frequency-domain representation of the signal on its own. The log grayscale approach gives 
the highest classification accuracy in clean conditions which can be expected since taking log 
power reveals the details in the low power frequencies unlike the linear grayscale approach 
where only the dominant power frequencies are shown. This can be visualized in the linear 
grayscale and log grayscale images in Figure 1(a) and (c), respectively. However, the 
performance of the two representations reverses with the addition of noise. The noise is more 
diffuse than the sound signal and its power affects most of the frequencies in the log 
grayscale image as shown in Figure 1(d). For the linear representation, the strong peaks of the 
sound are larger than the noise and remain largely unaffected with the addition of noise as 
can be seen in Figure 1(b).  

In [14], mapping the grayscale spectrograms to a higher dimensional space greatly improved 
the results. In our work, the increase in the average classification accuracy is minimal for the 
linear quantized spectrogram but greatly improved with the log quantized spectrogram. 
However, it still does not match the performance of the linear representations. More on the 
effect of quantization can be found in [14]. 

We also experimented with the SIF data representation method proposed in [14], which has 
been summarized in section 3.1.3. The results are given in Table V using OAA-SVM 
classification. While the average classification accuracy is slightly higher for the log 
representations when compared to the proposed RSIF data representation technique, the 
results with the linear representations are lower. The proposed RSIF method has the added 
advantage of a feature vector which is 2.25 times smaller in dimension, as explained in 
section 3.1.3. As such, the proposed method can be said to be much more effective for its 
dimension. 
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Table V: Classification accuracy using SIF data representation as in [14] 

Spectrogram 
Representation 

Clean 20dB 10dB 5dB 0dB Average

Linear Grayscale 91.60 91.34 88.80 67.19 40.51 75.89 
Log Grayscale 93.70 70.60 54.59 44.36 36.22 59.90 
Linear Quantized 93.70 93.70 84.69 68.07 45.14 77.06 
Log Quantized 98.95 87.58 64.04 51.53 41.21 68.66 

 

5.6 Results with Combined Features 

In the next experiment, we combine log and linear MFCCs with the RSIF to form the final 
feature vector for a sound signal. For the RSIF, we use the linear grayscale representation 
only since this approach was shown to give the best results in preliminary experiments. The 
feature vector dimension for the combined feature set is ሺ39 ൈ 2ሻ ൅ ሺ9 ൈ 4 ൈ 2ሻ ൌ 150. 

The classification accuracy with the combined features is given in Table VI. In both set of 
results, OAA-SVM classification method gives the highest average classification accuracy 
and also the most noise robust performance. In addition, at 10dB, 5dB, and 0dB SNR, the 
combination of linear MFCCs and linear grayscale spectrogram features performs 
significantly better than log MFCCs in combination with linear grayscale spectrogram 
features for all classification methods. 

Table VI: Classification accuracy with MFCCs + RSIF (linear grayscale) 

Classification 
Method 

Log MFCC + Linear Grayscale  Linear MFCC + Linear Grayscale  

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

OAA-SVM 97.38 95.98 90.11 80.49 57.13 84.22 97.11 96.06 93.61 89.15 70.95 89.38 
OAO-SVM 97.11 92.21 76.12 63.25 42.87 74.31 96.33 91.16 85.04 76.38 56.87 81.15 
DDAG-SVM 97.11 93.53 79.88 64.13 45.23 75.98 95.80 91.60 88.80 80.23 53.28 81.94 
ADAG-SVM 97.11 89.76 69.73 57.39 42.69 71.34 95.01 87.49 76.90 70.08 50.13 75.92 
KNN 96.85 91.34 58.79 43.92 32.28 64.64 97.38 92.56 83.90 73.40 57.92 81.03 

 

We also experimented with the inclusion of various time and frequency domain features 
mentioned in section 3.3 but only SBE, ZCR, and STE was shown to give any improvement 
in the classification accuracy. The classification accuracy values with the inclusion of these 
three features are given in Table VII.  

Table VII: Classification accuracy with linear MFCCs + RSIF (linear grayscale) + ZCR + 
STE + SBE 

Classification 
Method 

Clean 20dB 10dB 5dB 0dB Average

OAA-SVM 98.16 96.41 94.23 90.81 71.83 90.29 
OAO-SVM 96.33 92.39 85.04 76.47 57.04 81.45 
DDAG-SVM 96.06 93.44 88.80 81.01 53.72 82.61 
ADAG-SVM 95.28 89.50 76.99 71.30 51.62 76.94 
KNN 97.38 92.48 81.98 73.40 58.88 80.82 

 

OAA-SVM classification method once again gives the best average results and is seen to be 
more noise robust than the other classification methods. The better performance of the OAA 
classification method over the other methods under noisy conditions could be explained in 
terms of its decision function. In OAA classification, the class corresponding to the largest 
margin is declared the winner indicating a high confidence level in the decision. However, in 
the other three multiclass SVM classification methods, the final decision is based on 
classification between pair of classes. The class even with the slightest of margin wins and 
gets a vote in the case of OAO classification method or proceeds to the next round as in the 
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case of DDAG and ADAG classification methods. The hyperplane between classes has been 
determined using clean samples only and with the addition of noise, there could be more 
overlapping of data points meaning the hyperplane is no longer an optimal one. As such, 
chances of error with the OAO, DDAG, and ADAG methods are increased more than the 
OAA method.  

Multi-conditional training provides a more optimal hyperplane since it is trained with noise 
manipulated samples as well as clean samples. This explains the comparable classification 
accuracy obtained using OAO, DDAG, and ADAG methods as per the results using multi-
conditional training in [16, 17]. However, multi-conditional training increases the training 
time and also makes the classifier noise dependent. In addition, while KNN classification was 
seen to be very effective with linear MFCCs and linear spectrogram image features, it is seen 
to be ineffective in classification of combined feature sets. 

Furthermore, for features extracted from the linear spectrograms, which have been shown to 
be more noise robust than the log spectrograms, the results achieved using the proposed RSIF 
method of data representation are better than the SIF method of data representation given in 
[14]. We also achieved significant improvement in the performance under low SNRs using a 
combination of linear MFCCs and RSIF (linear grayscale). The inclusion of some time and 
frequency domain features also gave a marginal improvement in the performance with 
classification accuracy values of 98.16%, 96.41%, 94.23%, 90.81%, and 71.83% under clean 
conditions and at 20dB, 10dB, 5dB, and 0dB SNR, respectively. Except at 0dB SNR, all 
these values are higher than in [6], a related work the results for which are summarized in 
section 2. In this work, we considered 10 sound classes while 9 sound classes were used in 
[6]. We have used the same sound and noise databases but they used some hand recorded 
signals as well. While 6 of the 10 classes in our work are same as in [6], the choice of 
subclasses and selection of sound files may not necessarily be the same. As such, it cannot be 
conclusively said that our approach is better unless we have exactly the same experimental 
conditions.  

In Table VIII and IX, we present the confusion matrices under clean conditions and at 0dB 
SNR, respectively, with OAA-SVM classification method for the results obtained using the 
combined feature set in Table VII. The confusion matrix allows the observation of the degree 
of confusion between the different classes which gives a better understanding of the 
classification performance when compared to the overall classification accuracy results 
presented so far. The rows of the confusion matrix denote the sound classes that we want to 
classify and the columns denote the classified results. The values are given in percentage as 
number of correctly (or incorrectly) classified samples divided by number of test samples in 
the class. 

As an example, for the confusion matrix under clean conditions given in Table VIII, 98.33% 
of test samples from children voices were correctly classified while the remaining 1.67% 
were misclassified as footsteps. It can be said that there is only one-sided confusion between 
children voices and footsteps because test samples from children voices are misclassified into 
footsteps but not vice-versa. In fact, all the misclassifications in this case have one-sided 
confusion. 
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Table VIII: Confusion matrix for test samples under clean conditions with the combined 
feature set and OAA-SVM classification 

 Alarms 
Children 
Voices 

Construction
Dog 

barking
Footsteps

Glass 
breaking

Gunshots Horn Machines 
Phone 
rings

Alarms 100.00 0 0 0 0 0 0 0 0 0 
Children voices 0 98.33 0.00 0 1.67 0 0 0 0 0

Construction 0 3.33 96.67 0 0 0 0 0 0 0

Dog barking 0 0 0 100.00 0 0 0 0 0 0

Footsteps 0 0 0 0 100.00 0 0 0 0 0

Glass breaking 0 5.00 0 0 0 95.00 0 0 0 0

Gunshots 0 0 0 0 0 0 100.00 0 0 0

Horn 0 0 0 0 0 0 0 100.00 0 0

Machines 0 0 0 0 0 0 0 0 100.00 0

Phone Rings 0 8.70 0 0 0 0 0 0 0 91.30 

Overall Classification Accuracy = 98.16% 

 

While only four classes have misclassifications under clean conditions, all classes have 
misclassifications when tested with samples at 0dB SNR as per confusion matrix given in 
Table IX. Most of the misclassifications are into children voices which is consistent with the 
results using clean samples. In fact, all classes now have misclassifications into children 
voices. However, alarms, dog barking, gunshots, and horn are the worst performing classes 
with classification accuracy of less than 60%, largely due to the high misclassifications into 
children voices.  

Table IX: Confusion matrix for test samples at 0dB SNR with the combined feature set and 
OAA-SVM classification 

 Alarms 
Children 
Voices 

Construction
Dog 

barking
Footsteps

Glass 
breaking

Gunshots Horn Machines 
Phone 
rings

Alarms 48.33 31.67 1.67 0 1.67 0 0 0 10.00 6.67 
Children voices 0 83.33 5.56 0 0.56 4.44 0 0 6.11 0

Construction 0 7.78 92.22 0 0 0 0 0 0 0

Dog barking 0 44.05 3.57 52.38 0 0 0 0 0 0

Footsteps 0 4.68 15.20 0 80.12 0 0 0 0 0

Glass breaking 0 3.33 0.00 0 0 96.67 0 0 0 0

Gunshots 0 14.29 21.43 0 3.57 0 58.33 0 2.38 0

Horn 0 30.30 4.55 0 1.52 3.03 0 59.09 1.52 0

Machines 0 11.11 1.11 0 0 2.22 0 0 85.56 0

Phone Rings 0 10.87 5.07 0 0 0 0 0 13.77 70.29 

Overall Classification Accuracy = 71.83% 

 

Finally, we compare the training and evaluation time for the four multiclass SVM 
classification methods. These are provided in Table X for the combined feature set, the 
results for which are given in Table VII. The OAO, DDAG, and ADAG approaches have the 
same training procedure and time. The training time for OAA is about 19% higher than these 
three classification methods.  

The DDAG and ADAG classification methods have approximately the same evaluation time 
and are the fastest. Using the ADAG evaluation time as basis, OAA classification method 
takes about 35% longer while OAO classification method takes a significantly greater time, 
about 386% longer. The significantly higher evaluation time for the OAO classification 
method can be expected since it requires the evaluation for 45 classifiers per test sample 
when compared to only 9 classifiers for DDAG and ADAG classification methods. As such, 
ideally, the OAO approach should take 400% longer time to evaluate. 

 



Page 16 of 19 

Table X: Comparison of training and evaluation time of the multiclass SVM classification 
methods with the combined feature set 

Classification 
Method 

Training Time  
(s) 

No. of Classifiers 
Evaluated per Test 
Sample (𝑀 ൌ 10) 

Total Testing Time 
(s) 

OAA-SVM 0.498 10 28.223 

OAO-SVM 0.420 45 101.403 

DDAG-SVM 0.420 9 20.944 

ADAG-SVM 0.420 9 20.876 

 

6.0 Conclusion 

The overall classification accuracy of the proposed feature set which combines linear MFCCs 
and the RSIF (linear grayscale) produces much better results under noisy conditions when 
compared to the individual features. In general, the OAA multiclass SVM classification 
approach was seen to give the best overall classification accuracy together with being more 
noise robust. However, the training time of this classification method is slightly longer than 
the other multiclass SVM classification methods and it also has a slightly longer evaluation 
time when compared to DDAG and ADAG classification methods. 

While the proposed method is noise independent, that is, it does not require multi-conditional 
training, it is yet to be tested under other noise types. It will also be interesting to test the 
proposed method with other sound databases and with increasing number of sound classes. 
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