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 
Abstract—In this paper, we utilize time-frequency image 

representations of sound signals for feature extraction in an 
audio surveillance application. Starting with the conventional 
spectrogram images, we consider a new feature which is based on 
image texture analysis. It utilizes the gray-level co-occurrence 
matrix (GLCM), which captures the distribution of co-occurring 
values at a given offset. We refer this as the spectrogram image 
texture feature (SITF). Texture analysis is carried out in 
subbands and experimented on a sound database containing 10 
classes with each sound class containing multiple subclasses. The 
proposed feature was seen to be more noise robust than two 
commonly used cepstral features, mel-frequency cepstral 
coefficients (MFCCs) and gammatone cepstral coefficients 
(GTCCs), the spectrogram image feature (SIF), where central 
moments are extracted as features, and a variation of SIF with 
reduced feature dimension (RSIF). In addition, we achieved 
significant improvement in classification accuracy for the three 
time-frequency image features by utilizing a gammatone filter-
based time-frequency image, referred as cochleagram image, for 
feature extraction instead of the spectrogram image. A 
combination of cepstral and cochleagram image features also 
gave improvement in the classification performance. 
 

Index Terms—Audio surveillance, cochleagram, gammatone 
filter, gray-level co-occurrence matrix, spectrogram, support 
vector machines 

I. INTRODUCTION 

UTOMATIC sound recognition has many applications. 
Some of these include music genre classification [1], 

audio surveillance [2, 3], computer keystroke sound 
recognition for user identification [4], and biometric 
identification using heart sound [5]. Sound classification is a 
pattern recognition problem and being a relatively new area of 
research, most of the techniques involved are inspired from 
other pattern recognition problems, speech recognition in 
particular. This applies to the choice of features and 
classifiers. 

Cepstral features, mel-frequency cepstral coefficients
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(MFCCs), in particular, have been the traditional feature 
choice in sound recognition. MFCCs have been shown to be 
effective in structured environments but its classification 
performance is poor in the presence of noise [6]. However, 
features extracted from the spectrogram image of speech or 
sound signals have proved effective for classification in the 
presence of noise [6, 7]. The intensity values in the 
spectrogram image represent the dominant frequency 
components against time. Features which capture this 
information can improve the recognition rate in the presence 
of additive noise provided the noise spectrum does not contain 
strong spectral peaks.  

In [7], spectral subband centroids (SSCs) are used as 
supplementary features to achieve improvement in 
classification accuracy in the presence of noise in speech 
recognition. For robust sound event classification in [6], the 
spectrogram image is divided into multiple blocks and second 
and third central moments are computed in each block which 
forms the feature vector, referred as the spectrogram image 
feature (SIF). In [3], we proposed a technique to reduce the 
dimension of the SIF without compromising the classification 
accuracy, which we referred as the reduced spectrogram image 
feature (RSIF).  

In this work, we propose a number of improvements when 
compared to our earlier work in [3] in trying to achieve robust 
sound recognition in an audio surveillance application. We 
consider various features for this purpose which can be 
broadly categorized as cepstral features and time-frequency 
image features. For cepstral features, in [3] we considered 
MFCCs only but in this work we also present results using 
gammatone cepstral coefficients (GTCCs), which we found to 
be more robust than MFCCs. Similarly, we consider the SIF 
and RSIF as the spectrogram image derived features, as in [3]. 
However, we also consider a new feature based on the image 
texture analysis technique of gray-level co-occurrence matrix 
(GLCM), also known as gray-tone spatial dependence matrix 
[8], which gives the spatial relationship of pixels in an image. 
We refer this as the spectrogram image texture feature (SITF) 
[9]. Furthermore, for all the time-frequency image features, we 
propose feature extraction using a gammatone filter-based 
time-frequency image, referred as a cochleagram [10], instead 
of the conventional spectrogram image. In the case of 
cochleagram feature extraction, we refer the features SIF, 
RSIF, and SITF as CIF, RCIF, and CITF, respectively.  

In addition, feature vector combination has been shown to 
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improve the classification performance in a number of 
literature. A combination of cepstral features and SSCs 
improved the robustness in speech recognition in [7]. Various 
feature combinations were experimented with in a similar 
work in [2]. In [3], we achieved significant improvement in 
classification accuracy under noisy conditions with a 
combination of linear MFCCs and RSIF. In this work, we 
propose a combination of linear GTCCs and cochleagram 
image derived features in trying to achieve further 
improvement in classification performance when compared to 
the individual features on their own. 

The rest of this paper is organized as follows. Section II 
provides literature review and background on the methods that 
we are proposing for this work. In section III and IV, we 
discuss the current methods or feature extraction techniques 
and the proposed framework, respectively. The experimental 
results, discussions, and analysis are presented in section V 
and conclusions and recommendations are given in section VI. 

II. LITERATURE REVIEW 

Every sound signal produces a unique texture which can be 
visualized using a spectrogram image and analyzed for 
automatic sound recognition. In music genre recognition in 
[1], texture analysis is carried out using the GLCM texture 
analysis technique. The spectrogram image is firstly divided 
into zones for feature extraction. Due to the non-uniform 
nature of the sound signal spectrograms, this local feature 
extraction technique was shown to give higher results than 
global features. The following seven features are then 
extracted from the GLCM from the fourteen textural 
descriptors proposed in [8]: entropy, correlation, homogeneity, 
third order momentum, maximum likelihood, contrast, and 
energy.  

The GLCM method of image texture analysis using the 
fourteen textural descriptors of [8], a subset of these features, 
or with other textural descriptors has been employed in 
various other applications. These include insect recognition 
[11], fabric surface roughness evaluation [12], and urban and 
agricultural land classification [13]. It has also been applied 
for diagnosis of abdominal tumors using texture classification 
of ultrasound images [14] and mammogram texture 
classification for breast cancer detection [15]. In [16], 
however, instead of extracting features from the GLCM, the 
matrix values itself are used to form the feature vector in a 
face recognition problem. This approach was generally shown 
to give significantly better results than using the combined 
fourteen textural descriptors as features. We adopted this 
approach in [9] but as a spectrogram image texture analysis 
tool for sound classification. Texture analysis was carried out 
in subbands and instead of extracting textural descriptors from 
the GLCM, we concatenated the columns of the matrix to 
form the feature vector, which we referred as the SITF. 

While the spectrogram image is the most commonly used 
tool in time-frequency analysis of sound signals, it may not be 
the best choice depending on the application. Short-time 
Fourier transform (STFT) is a commonly used method for 
spectrogram image formation where the signal is divided into 

short duration frames and discrete Fourier transform (DFT) is 
applied to the windowed frames. The spectrum values from 
each frame are stacked side-by-side to form the spectrogram 
image. The spectrogram image shows dominant frequency 
information against time and the frequency components are 
equally spaced along the vertical with constant bandwidth. 
However, most sound signals hold greater frequency 
components in the lower frequency range and, therefore, the 
information in these frequency bands are not fully revealed in 
this time-frequency representation. 

A cochleagram is a variation of the spectrogram which uses 
a gammatone filter. A gammatone filter is a linear filter 
modeling the frequency selectivity property of the human 
cochlea. A commonly used cochlea model is that proposed by 
Patterson et. al. [17] which is a series of bandpass filters where 
the bandwidth is given by equivalent rectangular bandwidth 
(ERB). An efficient implementation of the gammatone filter 
bank is provided in [18] which has been used for computing 
GTCCs [19] and extended to gammatone wavelet (GTW) 
features in a similar application [20]. Feature extraction using 
cochleagram images finds applications in a number of areas 
involving signal processing and pattern recognition such as 
speech recognition [21] and audio separation [22]. In this 
work, we also use the cochleagram image for feature 
extraction but for sound classification. We consider the same 
features as for the spectrogram images and compare the 
classification performance against the spectrogram image 
derived features. 

We consider a total of 10 sound classes to evaluate the 
robustness of the proposed features. The performance of the 
features is evaluated under clean conditions and in the 
presence of different noise environments at different signal-to-
noise ratios (SNRs) using support vector machines (SVMs) for 
classification. Being a binary classifier, a number of 
techniques have been proposed for multiclass classification. 
The most common technique is to reduce the multiclass 
classification problem into multiple binary classification 
problems. Four commonly used methods based on this 
approach are one-against-all (OAA), one-against-one (OAO), 
decision directed acyclic graph (DDAG), and adaptive 
directed acyclic graph (ADAG). In [3], we compared the 
performance of these four methods and the kNN classifier and 
found the OAA multiclass [23] classification method to be 
generally more noise robust with a better overall performance. 
Therefore, in this work, we report results using OAA 
multiclass classification method only. Refer to [3] for an 
overview of SVMs, the multiclass classification methods, and 
the comparison of classification performance. 

In addition, for the problem of audio surveillance 
considered in this work, including the choice of sound and 
noise databases, we take a similar approach to [2], which is 
one of the most comprehensive piece of work in this area. 
Their sound database has a total of 1015 sound files with 9 
sound classes: human screams, gunshots, glass breaking, 
explosions, door slams, dog barks, phone rings, children 
voices, and machines. Each sound class has multiple 
subclasses with interclass similarity and intraclass diversity. 
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They considered various features which can be broadly 
classified as time-domain, frequency-domain, cepstral, and 
wavelet-based features. The highest classification accuracy 
values achieved with the best performing feature set are 
96.89% under clean conditions and 93.33%, 89.22%, 82.80%, 
and 72.89% at 20dB, 10dB, 5dB, and 0dB SNRs, respectively, 
with 70% of clean data used for training and the remaining for 
testing. While we take a similar approach with the 
experimental setup, our method is based on time-frequency 
image features. 

III. CURRENT METHODS 

In this section, we review some of the features used in 
similar previous works which we have considered in this 
work. We first describe the cepstral features which includes 
MFCCs and GTCCs. Spectrogram image generation and 
feature extraction for SIF and RSIF are explained next.  

A. Cepstral Features 

1) MFCCs 
In computation of MFCCs, firstly, the DFT is applied to the 

windowed signal as 
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where N is the length of the window, 𝑥ሺ𝑛ሻ is the time-domain 
signal, 𝑋ሺ𝑘, 𝑡ሻ is the 𝑘௧௛ harmonic corresponding to the 
frequency 𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄  for the 𝑡௧௛ frame, 𝐹௦ is the sampling 
frequency, and 𝑤ሺ𝑛ሻ is the window function. 

The triangular filter banks used in computing MFCCs are 
equally spaced on the mel-scale [24] and the adjacent filters 
overlap such that the lower and upper end of a filter are 
located at the center frequency of the previous and next filter, 
respectively, while the peak of the filter is at its center 
frequency. The output of the 𝑚௧௛ filter can then be determined 
as 
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where 𝐸ሺ𝑚, 𝑡ሻ represents the filter bank energies, 𝑉ሺ𝑚, 𝑘ሻ is 
the normalized filter response, and 𝑀ଵ is the total number of 
mel-filters. Some literature do not take square of the DFT 
values in computing the filter bank energies but we achieved 
better results using this approach. The results without taking 
the square of the DFT values is given in our earlier work in 
[3]. 

The MFCCs are then obtained as the discrete cosine 
transform (DCT) of the log compressed filter bank energies 
given as 
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which is evaluated from 𝑙 ൌ 1, 2, … , 𝐿, where 𝐿 is the order of 
 

the cepstrum. 
We also report results using linear MFCCs where no 

compression is applied to the filter bank energies before 
computing the cepstral coefficients which was seen to be more 
noise robust in [3]. 

 

2) GTCCs 
Extraction of GTCCs follow the same procedure as MFCCs 

except that gammatone filters are used instead of mel-filters. 
Gammatone filter banks are a series of bandpass filters the 
impulse response for which can be given as [17] 

   1 2 cos 2j Br
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where 𝐴 is the amplitude, 𝑗 is the order of the filter, 𝐵 is the 
bandwidth of the filter, 𝑓௖ is the center frequency of the filter, 
𝜙 is the phase, and 𝑟 is the time. 

The ERB is used to describe the bandwidth of each cochlea 
filter in [17]. ERB is a psychoacoustic measure of the auditory 
filter width at each point along the cochlea and can be given as 
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where 𝑄௘௔௥ is the asymptotic filter quality at high frequencies 
and 𝐵௠௜௡ is the minimum bandwidth for low frequency 
channels. The bandwidth of a filter can then be approximated 
as 𝐵 ൌ 1.019 ൈ 𝑓௖,ாோ஻. The three commonly used ERB filter 
models are given by Glasberg and Moore [25] (𝑄௘௔௥ ൌ 9.26, 
𝐵௠௜௡ ൌ 24.7, and 𝑝 ൌ 1), Lyon’s cochlea model as given in 
[26] (𝑄௘௔௥ ൌ 8, 𝐵௠௜௡ ൌ 125, and 𝑝 ൌ 2), and Greenwood 
[27] (𝑄௘௔௥ ൌ 7.23, 𝐵௠௜௡ ൌ 22.85, and 𝑝 ൌ 1). 

The human cochlea has thousands of hair cells which 
resonate at their characteristic frequency and at a certain 
bandwidth. In [18], the mapping between center frequency and 
cochlea position is determined by integrating the reciprocal of 
(5) with a step factor parameter to indicate the overlap 
between filters. This can then be inverted to find the mapping 
between filter index and center frequency which can be given 
as 
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where 𝑚 ൌ 1,2, … , 𝑀ଶ, 𝑀ଶ is the number of gammatone 
filters, 𝑓௛ is the maximum frequency in the filter bank, and 𝑠 is 
the step factor given as 
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where 𝑓௟ is the minimum frequency in the filter bank. 
We use a 4th order gammatone filter with four filter stages 

and each stage a 2nd order digital filter as given in [18]. The 
gammatone filter was implemented using the Auditory 
Toolbox for Matlab [28]. 
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Fig. 1.  Steps in time-frequency image generation and feature extraction (proposed time-frequency representation and feature extraction methods are enclosed in 
dashed lines). 
 
 
B. Time-Frequency Image Features 

The procedure for time-frequency image generation and 
feature extraction is explained with reference to Fig. 1. 

For the SIF and RSIF, central moments are extracted as 
features from the spectrogram images. To obtain the 
spectrogram image, the linear values are firstly obtained from 
the DFT values as 

   , , .S k t X k t  (8) 

These values are then normalized in the range ሾ0,1ሿ which 
gives the grayscale spectrogram image intensity values. The 
normalization is given as 
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Illustration of spectrogram images, color representations are 
shown for the grayscale values for better visualization, under 
clean conditions and with the addition of noise at 0dB SNR 
can be found in Fig. 2(a) and (b), respectively. 

The time-frequency image is divided into blocks and the 
𝑣௧௛ central moment for any given block of image is then 
determined as 
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where 𝐾 is the sample size or the number of pixels in the 
block, 𝐼௜ is the intensity value of the 𝑖௧௛ sample in the block, 
and 𝜇 is the mean intensity value of the block. 

IV. PROPOSED FRAMEWORK 

In this section, we present the proposed feature, SITF, and 
the proposed time-frequency image representation, 
cochleagram. The steps in the proposed feature extraction and 
time-frequency image generation are given in Fig. 1. 

A. SITF 

The intensity values in a spectrogram image are determined 
by the spectral energy in the sound signal at any given time 
and frequency. The dominant frequency components in the 
sound signal are mostly unaffected by the noise as long as the 

noise signal does not contain strong spectral peaks, as shown 
in the spectrogram images in Fig. 2(a) – (b) with factory noise. 
As such, the SITF aims to capture the patterns of the subband 
spectral energy in trying to achieve noise robust classification 
performance.  

The SITF uses the GLCM method of texture analysis which 
is a matrix of frequencies where each element ሺ𝑖, 𝑗ሻ is the 
number of times intensity value 𝑗 is located at a certain 
distance and angle, given by the displacement vector ሾ𝑑௞ 𝑑௧ሿ, 
where 𝑑௞ is the offset in the 𝑦 direction and 𝑑௧ is the offset in 
the 𝑥 direction, from intensity value 𝑖 in an 𝑁௧ ൈ 𝑁௞ image 𝐼. 
Mathematically, this can be given as 
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where the size of the output matrix is 𝑁௚ ൈ 𝑁௚, 𝑁௚ is the 
number of quantized gray levels. The typical angles for 
computing the GLCM are 0°, 45°, 90°, and 135° 
corresponding to the displacement vector ሾ0 𝑑ሿ, ሾെ𝑑 𝑑ሿ, 
ሾെ𝑑 0ሿ, and ሾെ𝑑 െ 𝑑ሿ, respectively. The feature vector for 
SITF is then formed by concatenating the GLCM values into a 
column vector. 

B. Cochleagram 

The cochleagram is another form of time-frequency 
representation and it mimics the components of the outer and 
middle ear [29]. In this representation, the signal is broken 
into different frequencies which are naturally selected by the 
cochlea and hair cells. This frequency selectivity can be 
modeled by a filter bank, such as a gammatone filter. 

A representation similar to the conventional spectrogram 
image can be obtained by smoothing the time series associated 
with each frequency channel of the gammatone filter and then 
adding the energy in the windowed signal for each frequency 
component which can be given as 
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where 𝑥ොሺ𝑛ሻ is the gammatone filtered signal and 𝐶ሺ𝑚, 𝑡ሻ is the  
𝑚௧௛ harmonic corresponding to the center frequency 𝑓௖௠ for 
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(a) (b) (c) (d)
 
Fig. 2.  Spectrogram and cochleagram images for a sample sound signal from construction sound class. (a) Spectrogram image under clean conditions, (b) 
spectrogram image at 0dB SNR with factory noise, (c) cochleagram image under clean conditions, and (d) cochleagram image at 0dB SNR with factory noise. 
 
 
the 𝑡௧௛ frame. 

These values are then normalized using (9) to get the 
grayscale cochleagram image intensity values.  

Illustration of cochleagram images under clean conditions 
and with the addition of noise at 0dB SNR can be found in 
Fig. 2(c) and (d), respectively, using the same sound signal as 
the spectrogram images of Fig. 2(a) and (b).  

C. Motivation 

The GLCM essentially captures the frequency of repeating 
patterns or intensity value combinations in the time-frequency 
image. We use only two intensity levels, 𝑁௚ ൌ 2, as 
determined to give the best results in [9], which means that the 
grayscale time-frequency image is treated as a binary image 
for feature extraction, therefore, revealing only the dominant 
frequency components. This also means that small linear 
transformations caused by the noise to the intensity values of 
the sound signal in the time-frequency image would not affect 
its transformation to binary format as long as the threshold for 
binary conversion is not crossed. In addition, as shown in Fig. 
2(b) and (d), the noise affects only certain frequency bands in 
the time-frequency images and the use of subband feature 
extraction, with the optimal number of subbands determined 
as 64 in [9], ensures that feature data in subbands not affected 
by noise remain unchanged.  

This is better illustrated in Fig. 3(a) and (b) where we have 
the normalized spectral energy distribution of a sound signal 
for the spectrogram image and cochleagram image, 
respectively. The spectral energy, in this context measured as 
the number of white pixels in the binary transformed image, is 
given in each of the 64 subbands without noise and with noise 
at 0dB SNR. The noise mostly affects subbands 13, 18, and 19 
in the spectrogram image and subbands 40, 45, and 46 in the 
cochleagram image. Otherwise, there is generally a good 
degree of correlation between the energy distributions of the 
clean and noisy signals in both representations. As such, 
except in these bands, the repeating patterns captured by the 
GLCM will largely remain unchanged from clean to 0dB SNR 
conditions, explaining the usefulness of the proposed feature 
extraction technique. 

In addition, while the spectrogram and cochleagram images 
of Fig. 2 use the same frequency range, ቂ0, 𝐹௦

2ൗ ቃ, the 

cochleagram offers a number of advantages [29]. Firstly, with 

 

 
Fig. 3.  Subband spectral energy distribution of a sound signal from 
construction sound class with and without noise for (a) spectrogram and (b) 
cochleagram. 

 
 

the ERB spacing of the filter center frequencies, the 
cochleagram offers an expanded representation at low 
frequencies, where most of the spectral information lies. 
Secondly, depending on the type of sound signal, formants in 
the lower frequencies can be resolved into harmonics in the 
cochleagram since they have a narrower bandwidth. 
Therefore, a cochleagram offers more frequency components 
in the lower frequency range with narrower bandwidth and 
fewer frequency components in the higher frequency range 
with wider bandwidth, showing much more spectral 
information than a spectrogram, as a result. The cochleagram 
also emphasizes acoustic onsets which can be effective for 
audio separation [22]. 
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The difference in the spread of spectral energy for the two 
representations is also illustrated in Fig. 3. For example, for 
the spectrogram image, the spectral energy is mainly 
distributed between subbands 2 to 20 and subbands 26 to 59 
for the cochleagram image, that is, over 18 subbands for the 
spectrogram image and 33 subbands for the cochleagram 
image. As such, the cochleagram image clearly reveals more 
spectral information which makes it a more effective time-
frequency representation for feature extraction.  

V. EXPERIMENTAL EVALUATION 

A description of the database of sounds used in this work is 
given first followed by an overview of the noise conditions 
and the experimental setup. We then present results using the 
cepstral features, MFCCs and GTCCs. This is followed by the 
results for the spectrogram image features, SIF, RSIF, and 
SITF. Results for the three time-frequency image features but 
using the cochleagram image for feature extraction are 
presented next. We then present results using feature vector 
combinations and, finally, the performance of the proposed 
techniques is analyzed. 

A. Sound Database 

The sound database has a total of 1143 files belonging to 10 
classes: alarms, children voices, construction, dog barking, 
footsteps, glass breaking, gunshots, horn, machines, and 
phone rings. Each sound class contains multiple subclasses 
with interclass similarity and intraclass diversity as 
demonstrated in [3]. The sound files are largely obtained from 
the Real World Computing Partnership (RWCP) Sound Scene 
database in Real Acoustic Environment [30] and the BBC 
Sound Effects library [31]. All signals in the database have 16-
bit resolution and a sampling frequency of 44100 Hz. More 
details about the sound database and its comparison with that 
used in other similar work can be found in [3]. 

B. Noise Conditions 

The performance of all features is evaluated under three 
different noise environments taken from the NOISEX-92 
database [32]: speech babble, factory floor 1, and destroyer 
control room. The signals are resampled at 44100 Hz and the 
performance is evaluated in clean conditions and at 20dB, 
10dB, 5dB, and 0dB SNRs. 

C. Experimental Setup 

For all experiments, signal processing is carried out using a 
Hamming window of 512 points (11.61 ms) with 50% overlap. 
The classification accuracy is given in percentage as number 
of correctly classified test samples divided by the total number 
of test samples. All results are reported using nonlinear SVM 
with a Gaussian radial basis function (RBF) kernel as it was 
found to give the best results. The classifier parameters, refer 
to [3], were tuned using cross validation. In tuning the 
parameters, one set of parameters which gave the best average 
classification accuracy were selected rather than determining 
the optimal parameters for each noise condition. For all 
experimentations, the classifier is trained with two-third of the 

clean samples with the remaining one-third of the samples 
used for testing under clean and noisy conditions.  

D. Results using Cepstral Features 
For the cepstral features, MFCCs and GTCCs, in 

determining the optimal minimum and maximum frequency 
limits for the mel and gammatone filter banks, we set the 
limits as multiples of the sampling frequency with the lower 

limit as ቂ0, 𝐹௦
𝑁ൗ , 2𝐹௦

𝑁ൗ , 3𝐹௦
𝑁ൗ , 4𝐹௦

𝑁ൗ ቃ and the upper limit as 

ቂ𝐹௦
8ൗ , 𝐹௦

4ൗ , 3𝐹௦
8ൗ , 𝐹௦

2ൗ ቃ. We also experimented with various 

number of filter channels and the fined-tuned parameter 
settings were determined as: MFCCs: 𝑀ଵ ൌ 26, 𝑓௟ ൌ
258.4 Hz, and 𝑓௛ ൌ 16537.5 Hz; GTCCs: 𝑀ଶ ൌ 24, 𝑓௟ ൌ
172.27 Hz, and 𝑓௛ ൌ 16537.5 Hz. Also, of the three ERB 
filter models considered for GTCCs, Lyon’s filter model was 
shown to give the best results so we present results using this 
model only. More details on such parameter tuning can be 
found in [19].  

For both the features, the feature vector for each frame is 
36-dimensional: 12 cepstral coefficients plus the first and 
second derivatives. The overall feature vector dimension for a 
signal is 36 ൈ 𝑁௧, where 𝑁௧ is the total number of frames in 
the sound signal, which is different in each case depending on 
the length of the signal. After data normalization, the feature 
vector is represented by concatenating the mean and standard 
deviation for each dimension. As such, the final feature vector 
is 72-dimensional. 

We experimented with both log compressed cepstral 
coefficients and root compressed cepstral coefficients [33]. In 
root cepstrum, instead of applying log compression to the 
filter bank energies, it is raised to the root value, 𝛾, normally 
in the range 0 ൏ 𝛾 ൑ 1. We experimented with various root 
values and achieved the best results around the root value of 1. 
Therefore, for both MFCCs and GTCCs, we use 𝛾 ൌ 1, which 
we refer as linear cepstrum. This means that no compression is 
applied to the filter bank energies.  

The classification accuracy values for MFCCs and GTCCs 
using log and linear compression are given in Table I. Both 
the cepstral features give highest average classification 
accuracy with linear cepstrums. While there isn’t a significant 
difference in the classification accuracy for log and linear 
cepstrums under clean conditions and at 20dB SNR, the 
classification accuracy is considerably better at 10dB, 5dB, 
and 0dB SNRs with linear cepstrums. GTCCs give the highest 
average classification accuracy for both compression methods.  

E. Results using Spectrogram Image Features 

We now present results using the spectrogram image 
derived features. For the SIF and RSIF, the spectrogram image 
is divided into 9 ൈ 9 blocks and second and third central 
moments are computed in each block. We also experimented 
with 3 ൈ 3, 5 ൈ 5, and 7 ൈ 7 blocks but best results were 
obtained with 9 ൈ 9 blocks which was the maximum that 
could be experimented with due to limitations in the length of 
the sound signal and the length of the spectrogram image as a 
result. For the SIF, the central moment values computed in
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TABLE I 
CLASSIFICATION ACCURACY VALUES USING MFCCS AND GTCCS 

 
Log Linear 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

MFCC 97.11 92.21 73.32 60.54 47.77 74.19 96.85 93.44 84.95 74.28 58.88 81.68 

GTCC 96.33 94.58 77.78 70.43 55.03 78.83 96.85 93.96 87.75 80.93 61.77 84.25 
 
 

TABLE II 
CLASSIFICATION ACCURACY VALUES USING SIF, RSIF, AND SITF 

 Clean 20dB 10dB 5dB 0dB Average

SIF 91.60 91.34 88.80 67.19 40.51 75.89 

RSIF 92.13 92.04 89.33 78.57 53.37 81.08 

SITF 89.76 89.41 89.33 87.66 71.92 85.62 

 
 

each block are concatenated to form the final feature vector 
which is 162-dimensional. With the RSIF, the mean and 
standard deviation of the central moment values along the 
rows and columns of the blocks are concatenated to form the 
final feature vector which is 72-dimensional. 

The classification accuracy values using SIF and RSIF are 
given in Table II. The best average classification accuracy is 
achieved using RSIF which is also the most noise robust. 
When compared to the conventional cepstral features, that is, 
log-compressed cepstrums, the average classification accuracy 
using RSIF is significantly better than MFCCs and marginally 
better than GTCCs. The RSIF is generally seen to be more 
effective at 10dB, 5dB, and 0dB SNRs. While the average 
classification accuracy using RSIF is only slightly lower than 
linear MFCCs, it is not able to match the average classification 
accuracy of linear GTCCs, which, at 84.25%, is the best 
performing baseline feature. 

SITF was presented in our earlier work in [9] where we 
performed classification with feature vector extracted using 
GLCM analysis at the individual angles, 
0°, 45°, 90°, and 135°, and then with a combined feature 
vector. The results showed that the combined feature vector 
gave only marginally better average classification accuracy 
then the individual feature vectors and had the disadvantage of 
a feature vector which was four times more than the individual 
feature vectors. Of the four angles considered, feature vector 
from analysis at an angle of 45° generally gave the best 
average classification accuracy. Therefore, in this work, we 
present results with analysis at an angle of 45° only. In 
addition, each subband spans four frequency bins with 𝑁௚ ൌ 2 
and 𝑑 ൌ 1, as determined to give the optimal results in [9]. As 
such, for the SITF, the final feature vector dimension is 256 
(𝑁௚

ଶ ൈ 64, where 64 refers to the number of subbands). The 
classification accuracy values using the SITF are given in 
Table II. 

With an average classification accuracy of 85.62% for the 
SITF, it could be said that the proposed feature gives 
significantly better performance than the SIF and RSIF. The 
classification performance is also higher than the best 
performing cepstral feature, linear GTCCs, which produced an 
average classification accuracy of 84.25%. The SITF is unable 
to match the classification accuracy of linear GTCCs under 

clean conditions and at 20dB SNR, however, marginally 
higher classification accuracy is achieved at 10dB SNR and 
significantly better classification accuracy is achieved at 5dB 
and 0dB SNRs. This makes the SITF more noise robust than 
linear GTCCs. 

F. Results using Cochleagram Image Features 

Cochleagram feature extraction follows the same procedure 
as the spectrogram images but now using a cochleagram 
image. To get the same image resolution as the spectrogram 
images, the number of gammatone filters, 𝑀ଶ, is set to 256 
with the same window size, 𝑁 ൌ 512. The classification 
accuracy values for CIF and RCIF are given in Table III and 
the classification accuracy values for CITF are given in Table 
IV. The results in each case are presented using the three ERB 
filter models. 

The average classification accuracy values for CIF and 
RCIF with all the ERB filter models show significant 
improvement when compared to SIF and RSIF, respectively. 
The highest average classification accuracy for both CIF and 
RCIF is achieved using Greenwood [27] parameters. As such, 
the average classification accuracy value increases from 
75.89% using SIF to 86.30% using CIF, an increase of 
10.41%, and from 81.08% using RSIF to 89.03% using RCIF, 
an increase of 7.95%. In addition, the improvement in the 
classification accuracy increases as the SNR decreases. From 
SIF to CIF, the classification accuracy value increases 1.58%, 
1.75%, 3.41%, 21.87%, and 23.44% under clean conditions 
and at 20dB, 10dB, 5dB, and 0dB SNRs, respectively. 
Similarly, from RSIF to RCIF, the classification accuracy 
value increases 2.62%, 2.71%, 5.25%, 13.12%, and 16.01% 
under clean conditions and at 20dB, 10dB, 5dB, and 0dB 
SNRs, respectively. This shows that while the classification 
accuracy value under all noise conditions has improved, the 
most improved results are at low SNRs, 5dB and 0dB SNRs, 
in particular. In addition, the overall results for CIF and RCIF 
are significantly higher than linear GTCCs, and, as with 
spectrogram image feature extraction, the reduced feature 
method once again gives the best average classification 
accuracy. 

Furthermore, for the CITF, the highest average 
classification accuracy is achieved using Glasberg and Moore 
[25] parameters, as per the results in Table IV. There is also an 
improvement in the average classification accuracy when 
compared to the spectrogram based features, increasing from 
85.62% with SITF to 89.24% with CITF, an increase of 
3.62%. For the individual noise conditions, the improvement 
in classification accuracy is 2.89%, 3.24%, 2.88%, 2.72%, and 
6.38% under clean conditions and at 20dB, 10dB, 5dB, and 
0dB SNRs, respectively. 
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TABLE III 
CLASSIFICATION ACCURACY VALUES USING CIF AND RCIF FOR THE THREE ERB FILTER MODELS 

ERB Filter Model 
CIF RCIF 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

Glasberg and Moore [25] 92.13 91.78 90.73 85.74 63.08 84.69 94.75 94.58 94.14 89.68 65.44 87.72 

Lyon [26] 91.60 91.25 90.46 83.38 58.88 83.11 95.01 94.40 93.35 89.59 65.44 87.56 

Greenwood [27] 93.18 93.09 92.21 89.06 63.95 86.30 94.75 94.75 94.58 91.69 69.38 89.03 

 
 

TABLE IV 
CLASSIFICATION ACCURACY VALUES USING CITF FOR THE THREE ERB FILTER 

MODELS 

ERB Filter Model 
CITF 

Clean 20dB 10dB 5dB 0dB Average
Glasberg and 
Moore [25] 

92.65 92.65 92.21 90.38 78.30 89.24 

Lyon [26] 92.13 91.78 91.34 89.41 80.75 89.08 

Greenwood [27] 91.86 91.78 91.78 89.85 78.04 88.66 

 
 

Therefore, all the time-frequency image features show 
improvement in classification accuracy under all noise 
conditions when using a cochleagram image for feature 
extraction instead of the spectrogram image. Unlike CIF and 
RCIF, the improvement in classification accuracy value is 
generally much more even for CITF and the improvement in 
the average classification accuracy lower. Also, while the 
RSIF could not match the average classification accuracy of 
the SITF, RCIF gives comparable average classification 
accuracy to CITF. However, CITF can be considered the most 
noise robust feature with a classification accuracy of 78.30% 
at 0dB SNR for the best overall performing ERB filter model. 

G. Results using Feature Combinations 

Results using a combination of cepstral and time-frequency 
image features is presented in this subsection. For the cepstral 
features, we consider linear GTCCs only since it gives the best 
classification accuracy of all the cepstral features. Similarly, 
we use cochleagram image features only since they give much 
better classification performance than spectrogram image 
features. The classification accuracy values using a 
combination of linear GTCCs and the cochleagram image 
features, with the best overall performing ERB model used in 
each case, is given in Table V. 

The average classification accuracy values for all 
cochleagram image features show some improvement when 
combined with linear GTCCs. The improvement is 5.23%, 
3.55%, and 4.06% for CIF, RCIF, and CITF, respectively. As 
such, CIF combined with linear GTCCs gives the most 
improved results. However, CITF is once again the best 
performing feature with an average classification accuracy of 
93.30% when combined with linear GTCCs. In addition, this 
combination also gives the most noise robustness performance 
with a classification accuracy of 94.23% and 83.73% at 5dB 
and 0dB SNRs, respectively. 

H. Performance Analysis 

The proposed method of feature extraction using the GLCM 
gives the most noise robust performance and also the best 
overall classification performance with spectrogram feature  

TABLE V 
CLASSIFICATION ACCURACY VALUES USING LINEAR GTCCS COMBINED WITH 

COCHLEAGRAM IMAGE FEATURES 
Linear 

GTCCs +
Clean 20dB 10dB 5dB 0dB Average

CIF 96.06 95.98 95.28 93.35 76.99 91.53 

RCIF 97.64 97.38 96.59 91.51 79.79 92.58 

CITF 96.59 96.59 95.36 94.23 83.73 93.30 

 
 
extraction, cochleagram feature extraction, and when 
combined with linear GTCCs. The peak of the filter bank 
energies play a key role in characterizing a sound signal which 
is demonstrated by the superior performance of both the 
cepstral features under clean conditions. However, the 
conventional log compression can produce high variations in 
the output for low energy components [34] which explains its 
poor performance as the SNR decreases. While the 
introduction of linear cepstrums improved the noise 
robustness, the cochleagram image derived features give a far 
superior performance at low SNRs. 

While we have been presenting the overall classification 
accuracy values so far, to understand the classification 
performance between classes, we present the classification and 
misclassification values of classes. The confusion matrix for 
the CITF, the best performing individual feature, under clean 
conditions and in the presence of noise at 0dB SNR is given in 
Table VI and Table VII, respectively. The values in the 
confusion matrix are given in percentage as number of 
correctly (or incorrectly) classified samples divided by 
number of test samples in the class. The rows in the confusion 
matrix denote the classes that we intend to classify while the 
classified results are given in the columns.  

For example, for the confusion matrix under clean 
conditions given in Table VI, 96.67% of the test samples from 
alarms were correctly classified while the remaining 3.33% 
were misclassified into children voices, which includes 
children crying and screaming. Dog barking, footsteps, and 
glass breaking also have misclassification in one class only 
while gunshots, horn, machines, and phone rings are the best 
performing classes with no misclassifications. Children voices 
and construction are the worst performing classes with a 
classification accuracy of 70% and 83.33%, respectively, with 
both classes also having multiple misclassifications. In 
addition, there is only one-sided confusion between footsteps 
and dog barking whereby test samples from footsteps are 
misclassified into dog barking but not vice-versa. Alarms, 
construction, dog barking, and glass breaking have two-sided 
confusion with children voices whereby test samples from 
each of these classes is misclassified into children voices and
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TABLE VI 
CONFUSION MATRIX FOR TEST SAMPLES UNDER CLEAN CONDITIONS USING CITF 

 Alarms 
Children 
Voices 

Construction
Dog 

barking
Footsteps

Glass 
breaking

Gunshots Horn Machines 
Phone 
rings

Alarms 96.67 3.33 0 0 0 0 0 0 0 0 
Children voices 3.33 70.00 5.00 11.67 6.67 1.67 0 1.67 0 0 
Construction 0 6.67 83.33 0 0 6.67 0 0 0 3.33 
Dog barking 0 3.57 0 96.43 0 0 0 0 0 0 
Footsteps 0 0 0 1.75 98.25 0 0 0 0 0 
Glass breaking 0 5.00 0 0 0 95.00 0 0 0 0 
Gunshots 0 0 0 0 0 0 100.00 0 0 0 
Horn 0 0 0 0 0 0 0 100.00 0 0 
Machines 0 0 0 0 0 0 0 0 100.00 0 
Phone Rings 0 0 0 0 0 0 0 0 0 100.00 

Overall Classification Accuracy = 92.65% 

 
TABLE VII 

CONFUSION MATRIX FOR TEST SAMPLES AT 0DB SNR USING CITF (MISCLASSIFICATIONS OF MORE THAN 10% HAVE BEEN HIGHLIGHTED) 

 Alarms 
Children 
Voices 

Construction
Dog 

barking
Footsteps

Glass 
breaking

Gunshots Horn Machines 
Phone 
rings

Alarms 86.11 7.22 0 6.67 0 0 0 0 0 0 
Children voices 3.89 61.67 7.78 12.78 6.11 4.44 0 3.33 0 0 
Construction 0 6.67 85.56 0 0 2.22 0 0 0 5.56 
Dog barking 0 5.95 0 92.86 0 0 0 0 0 1.19 
Footsteps 0 1.17 4.09 2.92 77.19 0 9.36 0.58 0 4.68 
Glass breaking 0 5.00 0 0 0 91.67 0.00 0 0 3.33 
Gunshots 0 2.38 11.90 0 3.57 0 82.14 0 0 0 
Horn 0 0 0 1.52 0 0 0 98.48 0 0 
Machines 0 11.11 3.33 0 0 22.22 0 0 47.78 15.56 
Phone Rings 0 5.07 0.72 1.45 0 13.04 0 0 0 79.71 

Overall Classification Accuracy = 78.30% 

 
 

  
(a) 

 
(b) 

Fig. 4.  Cochleagram images of sample sound signal from sub class 1 of sound 
class machines. (a) Cochleagram image of sound signal under clean 
conditions and (b) cochleagram image of sound signal at 0dB SNR with 
destroyer control room noise. 
 
vice-versa. 

Looking at the confusion matrix at 0dB SNR, Table VII, all 
classes now have misclassifications when compared to only 
six classes which had misclassification(s) under clean 
conditions. Once again, most classes have misclassification 
into children voices, all except horn, which, with a 
classification accuracy of 98.48%, is also the best performing 
class and the only one not to have multiple misclassifications. 
While there were no misclassifications for machines under 
clean conditions, it is the worst performing class at 0dB SNR 
with a classification accuracy of just 47.78%. It also has two 
of the highest misclassifications into any single class, 22.22% 
into glass breaking and 15.56% into phone rings.  

To further understand the effect of the different 
environmental noises on the classification performance, we 
computed the average classification accuracy for each noise 

type at 0dB SNR which are as follows: speech babble – 
69.29%, destroyer control room – 78.74%, and factory floor 1 
– 86.88%. This shows that most of the misclassifications are 
due to speech babble noise while factory floor 1 has the least 
misclassifications. The machines sound class has three 
subclasses and, upon further analysis, it was observed that 
under destroyer control room noise, most of the test samples 
from subclasses 1 and 2 were misclassified into children 
voices and phone rings, respectively. The cochleagram image 
of a sample sound signal from subclass 1 under clean 
conditions and with the addition of destroyer control room 
noise at 0dB SNR is shown in Fig. 4(a) and (b), respectively. 
The dominant frequency components of the sound signal are 
clearly evident under clean conditions in Fig. 4(a). While they 
are also largely visible with the addition of noise, Fig. 4(b), 
the destroyer control room noise introduces strong spectral 
peaks which significantly alters the intensity distribution in the 
cochleagram image, hence, making the classification task 
much more difficult. While we still manage a decent overall 
classification accuracy of 78.74% using destroyer control 
room noise at 0dB SNR, it could be said that the proposed 
features are more suited to noise environments which do not 
contain strong spectral peaks, such as factory floor 1, as 
shown in the time-frequency images in Fig. 2. 

Moreover, compared to CITF, GTCCs have significantly 
higher confusion at 0dB SNR as seen in Table VIII. To some 
extent, there is a reversal in the classification performance of 
individual classes. For example, with CITF, children voices,  
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TABLE VIII 
CONFUSION MATRIX FOR TEST SAMPLES AT 0DB SNR USING GTCCS (MISCLASSIFICATIONS OF MORE THAN 10% HAVE BEEN HIGHLIGHTED) 

 Alarms 
Children 
Voices 

Construction
Dog 

barking
Footsteps

Glass 
breaking

Gunshots Horn Machines 
Phone 
rings

Alarms 48.89 15.00 0 0 0 23.89 0 0 0 12.22 
Children voices 0 85.00 1.11 0.56 0 6.11 0 0 6.11 1.11 
Construction 0 7.78 64.44 0 0 23.33 4.44 0 0 0 
Dog barking 9.52 54.76 2.38 22.62 0 10.71 0 0 0 0 
Footsteps 0 9.36 1.75 0 54.39 32.16 2.34 0 0 0 
Glass breaking 0 10.00 0 0 0 81.67 0 0 3.33 5.00 
Gunshots 0 7.14 15.48 0 25.00 30.95 21.43 0 0 0 
Horn 1.52 25.76 1.52 0 0 1.52 0 69.70 0 0 
Machines 0 3.33 0 0 1.11 18.89 0 0 61.11 15.56 
Phone Rings 0 1.45 0 0 0 0.72 0 0 5.80 92.03 

Overall Classification Accuracy = 61.77% 

 

machines, and phone rings are amongst the worst performing 
classes at 0dB SNR. However, the classification accuracy of 
these classes is higher with GTCCs. For all the other classes, 
however, CITF gives much better classification performance 
than GTCCs. There are also some similar trends as far as 
misclassifications are concerned. With CITF, all except one 
class has misclassifications into children voices and with 
GTCCs, all classes have misclassifications into children 
voices. Also, misclassifications of more than 10% are most 
into glass breaking for both features, two classes for CITF and 
six classes for GTCCs.  

Furthermore, the number of classes in this work is one more 
than in [2] with 66.67% of data used for training when 
compared to 70% in [2]. As such the classification task in this 
work can be considered slightly more challenging. While we 
attain a more noise robust performance, it is difficult to 
conclusively say that our approach is better due to the 
variations in sound and noise databases. However, in our 
earlier work in [3], we used exactly the same sound and noise 
databases with the best average classification accuracy of 
90.29% achieved using a combination of linear MFCCs, RSIF, 
and some time and frequency domain features. The 
classification accuracy values achieved were 98.16%, 96.41%, 
94.23%, 90.81%, and 71.83% under clean conditions and at 
20dB, 10dB, 5dB, and 0dB SNRs, respectively. In this work, 
we have proposed methods to improve the classification 
performance of cepstral and time-frequency image features. 
As far as the performance of the individual features is 
concerned, we have achieved significant improvement in 
average classification accuracy and noise robustness using the 
CITF when compared to [3] where RSIF was the best 
performing feature. In addition, with the best performing 
feature set of linear GTCCs combined with CITF, we achieve 
a better overall classification performance and significantly 
improved results at 5dB and 0dB SNRs when compared to the 
combined features of [3]. 

VI. CONCLUSION 

We considered a number of cepstral and time-frequency 
image features in trying to achieve improvement in 
classification accuracy in the presence of noise in an audio 
surveillance application. The proposed SITF, based on the 

GLCM method of image texture analysis, showed greater 
noise robustness when compared to two cepstral features, 
MFCCs and GTCCs, and two time-frequency image features, 
SIF and RSIF. For the three time-frequency image features, 
significantly improved classification performance was 
achieved with feature extraction using a cochleagram image, 
which uses a gammatone filter based on the human cochlea 
model. With cochleagram image feature extraction, the SIF, 
RSIF, and SITF were referred as CIF, RCIF, and CITF, 
respectively. For both time-frequency image representations, 
feature vector formation using the GLCM texture analysis 
technique gave the best overall performance. In addition, the 
performance of the cochleagram image features was further 
improved when combined with linear GTCCs, which was the 
best performing cepstral feature. The combination of linear 
GTCCs and CITF gave the best overall classification accuracy 
and also the most noise robust. 

While the proposed features show improvement in 
classification performance when compared to related work, 
there are still a few areas to improve on. The proposed 
features are not well suited to noise types which contain strong 
spectral peaks and more research is needed in this regards to 
attain an even better performance. In addition, this work does 
not consider out-of-class sound signals which is necessary for 
a practical implementation of an audio surveillance system. 

REFERENCES 
[1] Y. M. G. Costa, L. S. Oliveira, A. L. Koericb, and F. Gouyon, "Music 

genre recognition using spectrograms," in 18th International Conference 
on Systems, Signals and Image Processing (IWSSIP), 2011, pp. 1-4. 

[2] A. Rabaoui, M. Davy, S. Rossignol, and N. Ellouze, "Using one-class 
SVMs and wavelets for audio surveillance," IEEE Transactions on 
Information Forensics and Security, vol. 3, no. 4, pp. 763-775, 2008. 

[3] R. V. Sharan and T. J. Moir, "Noise robust audio surveillance using 
reduced spectrogram image feature and one-against-all SVM," 
Neurocomputing, vol. 158, pp. 90-99, 2015. 

[4] J. Roth, X. Liu, A. Ross, and D. Metaxas, "Investigating the 
discriminative power of keystroke sound," IEEE Transactions on 
Information Forensics and Security, vol. 10, no. 2, pp. 333-345, 2015. 

[5] F. Beritelli and S. Serrano, "Biometric identification based on frequency 
analysis of cardiac sounds," IEEE Transactions on Information 
Forensics and Security, vol. 2, no. 3, pp. 596-604, 2007. 

[6] J. Dennis, H. D. Tran, and H. Li, "Spectrogram image feature for sound 
event classification in mismatched conditions," IEEE Signal Processing 
Letters, vol. 18, no. 2, pp. 130-133, 2011. 



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 

 
11

[7] K. K. Paliwal, "Spectral subband centroid features for speech 
recognition," in Proceedings of the 1998 IEEE International Conference 
on Acoustics, Speech and Signal Processing, 1998, pp. 617-620. 

[8] R. M. Haralick, K. Shanmugam, and I. Dinstein, "Textural features for 
image classification," IEEE Transactions on Systems, Man and 
Cybernetics, vol. SMC-3, no. 6, pp. 610-621, 1973. 

[9] R. V. Sharan and T. J. Moir, "Robust audio surveillance using 
spectrogram image texture feature," in 2015 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), 
Brisbane, Australia, 2015, pp. 1956-1960. 

[10] R. V. Sharan and T. J. Moir, "Cochleagram image feature for improved 
robustness in sound recognition," in 2015 IEEE International 
Conference on Digital Signal Processing (DSP), Singapore, 2015. 

[11] L.-Q. Zhu and Z. Zhang, "Auto-classification of insect images based on 
color histogram and GLCM," in Seventh International Conference on 
Fuzzy Systems and Knowledge Discovery (FSKD), 2010, pp. 2589-2593. 

[12] X. Wang and N. D. Georganas, "GLCM texture based fractal method for 
evaluating fabric surface roughness," in Canadian Conference on 
Electrical and Computer Engineering (CCECE '09), 2009, pp. 104-107. 

[13] M. Umaselvi, S. S. Kumar, and M. Athithya, "Color based urban and 
agricultural land classification by GLCM texture features," in IET 
Chennai 3rd International Conference on Sustainable Energy and 
Intelligent Systems (SEISCON 2012), 2012, pp. 1-4. 

[14] D. Mitrea, M. Socaciu, R. Badea, and A. Golea, "Texture based 
characterization and automatic diagnosis of the abdominal tumors from 
ultrasound images using third order GLCM features," in 4th 
International Congress on Image and Signal Processing (CISP), 
Shanghai, 2011, pp. 1558-1562. 

[15] S. Beura, B. Majhi, and R. Dash, "Mammogram classification using two 
dimensional discrete wavelet transform and gray-level co-occurrence 
matrix for detection of breast cancer," Neurocomputing, vol. 154, pp. 1-
14, 2015. 

[16] A. Eleyan and H. Demirel, "Co-occurrence matrix and its statistical 
features as a new approach for face recognition," Turkish Journal of 
Electrical Engineering & Computer Sciences, vol. 19, no. 1, pp. 97-107, 
2011. 

[17] R. D. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, 
and M. Allerhand, "Complex sounds and auditory images," in Auditory 
physiology and perception. vol. 83, Y. Cazals, L. Demany, and K. 
Horner, Eds. Pergamon, Oxford, 1992, pp. 429-446. 

[18] M. Slaney, "An efficient implementation of the Patterson-Holdsworth 
auditory filter bank," Apple Computer, Technical Report 35, 1993. 

[19] X. Valero and F. Alias, "Gammatone cepstral coefficients: Biologically 
inspired features for non-speech audio classification," IEEE 
Transactions on Multimedia, vol. 14, no. 6, pp. 1684-1689, 2012. 

[20] X. Valero and F. Alias, "Gammatone wavelet features for sound 
classification in surveillance applications," in Proceedings of the 20th 
European Signal Processing Conference (EUSIPCO), Bucharest, 2012, 
pp. 1658-1662. 

[21] E. W. Healy, S. E. Yoho, Y. Wang, and D. Wang, "An algorithm to 
improve speech recognition in noise for hearing-impaired listeners," The 
Journal of the Acoustical Society of America, vol. 134, no. 4, pp. 3029-
3038, 2013. 

[22] B. Gao, W. L. Woo, and L. C. Khor, "Cochleagram-based audio pattern 
separation using two-dimensional non-negative matrix factorization with 
automatic sparsity adaptation," The Journal of the Acoustical Society of 
America, vol. 135, no. 3, pp. 1171-85, Mar 2014. 

[23] V. N. Vapnik, Statistical learning theory. New York: Wiley, 1998. 
[24] D. O'Shaughnessy, Speech communication: human and machine. 

Addison-Wesley Pub. Co., 1987. 
[25] B. R. Glasberg and B. C. Moore, "Derivation of auditory filter shapes 

from notched-noise data," Hearing Research, vol. 47, no. 1-2, pp. 103-
138, 1990. 

[26] M. Slaney, "Lyon’s Cochlear Model," Apple Computer, Technical 
Report 13, 1988. 

[27] D. D. Greenwood, "A cochlear frequency-position function for several 
species - 29 years later," Journal of the Acoustical Society of America 
vol. 87, no. 6, pp. 2592-2605, Jun 1990. 

[28] M. Slaney, "Auditory Toolbox for Matlab," Interval Research 
Corproation, Technical Report 1998-010, 1998. 

[29] D. Wang and G. J. Brown, "Fundamentals of computational auditory 
scene analysis," in Computational auditory scene analysis: Principles, 
algorithms and applications, D. Wang and G. J. Brown, Eds. IEEE 
Press/Wiley-Interscience, 2006, pp. 1-44. 

[30] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, 
"Acoustical sound database in real environments for sound scene 
understanding and hands-free speech recognition," in Proceedings of the 
2nd International Conference on Language Resources and Evaluation 
(LREC 2000), Athens, Greece, 2000, pp. 965–968. 

[31] BBC Sound Effects Library. Available: http://www.leonardosoft.com 
[32] A. Varga and H. J. M. Steeneken, "Assessment for automatic speech 

recognition: II. NOISEX-92: A database and an experiment to study the 
effect of additive noise on speech recognition systems," Speech 
Communication, vol. 12, no. 3, pp. 247-251, Jul. 1993. 

[33] R. Sarikaya and J. H. Hansen, "Analysis of the root-cepstrum for 
acoustic modeling and fast decoding in speech recognition," in 
EUROSPEECH-2001, Aalborg, Denmark, 2001, pp. 687-690. 

[34] V. Tyagi and C. Wellekens, "On desensitizing the mel-cepstrum to 
spurious spectral components for robust speech recognition," in 
Proceedings of IEEE International Conference on Acoustics, Speech, 
and Signal Processing (ICASSP '05), 2005, pp. 529-532. 

 
 

Roneel V. Sharan (M’08) completed 
M.Sc. in engineering from the 
University of the South Pacific (USP), 
Fiji, in 2006. He is currently pursuing 
the Ph.D. degree at the School of 
Engineering, Auckland University of 
Technology (AUT), New Zealand. 

From 2004 to 2005, he was a graduate 
assistant at the School of Engineering at 

USP and an assistant lecturer from 2006 to 2013. His research 
interests include pattern recognition, image processing, and 
signal processing. 
 
 

 
Tom J. Moir was born in Dundee 
Scotland. He was sponsored by GEC 
Industrial Controls Ltd, Rugby 
Warwickshire UK from 1976 to 1979 
during his B.Sc. in control engineering 
which he was awarded in 1979. In 1983 
he received the degree of Ph.D. for work 
on self-tuning filters and controllers.  

From 1982 to 1983 he was with the 
Industrial Control unit University of Strathclyde, Scotland. 
From 1983 to 1999 he was a lecturer then senior lecturer at 
Paisley College/University of Paisley, Scotland. Moving to 
Auckland, New Zealand in 2000, he was with Massey 
University for 10 years at the Institute of Information and 
Mathematical Sciences followed by the School of Engineering 
and Advanced Technology. He moved to Auckland University 
of Technology in 2010 as an Associate Professor in the School 
of Engineering where he works in the area of signal 
processing and automatic control engineering. He has 
authored over 100 publications in these fields and is chairman 
of the Signals and Systems group. He is the holder of one US 
patent on amplitude-locked loop circuits.  

Dr. Moir is an IET member and member of FEANI and 
IPENZ. 
 
 
 

 
 


