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Abstract 

Automatic sound recognition (ASR) has seen an increased and wide ranging interests in 
recent years. In this paper, we carry out a review of some important contributions in ASR 
techniques, mainly over the last one and a half decades. Similar to speech recognition 
systems, the robustness of an ASR system largely depends on the choice of feature(s) and 
classifier(s). We take a wider perspective in providing an overview of the features and 
classifiers used in ASR systems starting from early works in content-based audio 
classification to more recent developments in applications such as sound event recognition, 
audio surveillance, and environmental sound recognition. We also review techniques that 
have been utilized in noise robust sound recognition systems and feature optimization 
methods. Finally, some of the less commonly known applications of ASR are discussed. 

Keywords: automatic sound recognition, cepstral coefficients, deep neural networks, sound 
event recognition, support vector machines, time-frequency image 

1.0 Introduction 

Any given environment generally contains a number of different sounds. In early literature, 
these sounds were often divided into speech and non-speech. The task of non-speech sound 
classification is now more commonly known as automatic sound recognition (ASR). It is also 
referred as sound event recognition (SER) and acoustic event detection in some contexts.  

An ASR system aims to recognize sounds automatically using signal processing and machine 
learning techniques. In concept, it is very similar to an automatic speech recognition system 
except that the input signal is non-speech. While research in speech recognition has received 
significant attention over the past few decades, research in ASR only seems to have 
intensified over the past two decades or so. 

There are many applications of an ASR system. Initial interests in ASR were mostly centered 
around content-based audio classification and retrieval [1-3] and speech and non-speech 
recognition [4, 5]. The specific application of most of these initial works were unclear but 
were eventually streamlined into applications such as music genre classification [6] and 
musical instrument sound classification [7]. 

However, applications have diversified since then with interests in areas such as audio 
surveillance [8], sound event recognition [9], and environmental sound recognition [10]. 
While audio surveillance can be seen as a subclass of sound event recognition, there are some 
differences as discussed in section 4.1. Applications of audio surveillance and sound event 
recognition systems include security monitoring in a room [11] and public transport [12], 
intruder detection in wildlife areas [13], and monitoring of elderly people, also referred as 
medical telemonitoring [14]. Environmental sound recognition poses a greater challenge 
when compared to audio surveillance and sound event recognition applications. This is 
because an environmental sound can comprise a number of different sound events within the 
environment which can be present in different combinations at any given time. 

While the applications of ASR are many, the general approach to these pattern recognition 
problems are same and generally inspired from techniques employed in speech recognition 
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systems. An overview of a statistical pattern classifier adopted in most ASR systems is given 
in Figure 1. The three key steps in implementing an ASR system are signal preprocessing, 
feature extraction, and classification. Signal preprocessing seeks to prepare the sound signal 
for feature extraction. Typically, a signal is divided into smaller frames, often in the range of 
10-30 ms, and a window function is applied to smooth the signal for further analysis. 
Hamming window seems to be the preferred choice in most ASR systems. While speech 
recognition systems typically use a sampling frequency of 8000 Hz, ASR systems employ a 
sampling frequency of 8000 Hz or higher, common values are 16000 Hz, 22050 Hz, and 
44100 Hz, largely depending on the frequency bands of the sound signals considered in the 
application. Depending on the sampling frequency of the signal, a frame size of 256, 512, or 
1024 samples are normally chosen with some degree of overlap between adjacent frames, 
such as 25% or 50%, to prevent loss of information around the edges of the window. Inherent 
features are then extracted from the signals and the input signal is represented by a feature 
vector in a much simpler and condensed form, which is referred as feature extraction. The 
time domain signal is often transformed to frequency domain or time-frequency domain for 
this purpose. Based on a set of training data containing observations whose classes are 
known, the task of the classifier is then to assign unknown observations to one of the classes.  

 

Figure 1: Model of a typical statistical pattern classifier employed in ASR systems 

Features and classifiers from speech recognition systems are often employed in ASR systems. 
While most of the traditional features continue to be used today, they are often complemented 
with new features for improved performance. A thorough review of features for audio 
classification is provided in [15] where the features are distinguished based on its domain and 
can be summarized as: 

 Temporal domain – based on the aspect of the signal the feature represents such as 
amplitude, power, and zero-crossing rate1. 

 Frequency domain – which can be further divided into perceptual features, which have a 
semantic meaning to the human listener, and physical features, which give description in 
terms of mathematical, statistical, and physical properties of the audio signal. 

 Cepstral features – approximate the spectral envelope. 
 Modulation frequency features – provide information on long-term amplitude or 

frequency variation of the signal. 
 Eigen domain features – representing long-term information contained in sound segments 

with duration of several seconds. 
 Phase space features – which capture information orthogonal to features originating from 

linear models. 

 
Footnote: 1Zero crossing rate is extracted from time domain but captures the frequency content of the signal. 
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Time domain, frequency domain, and cepstral features are by far the most commonly used 
features in ASR systems. 

In addition, the commonly used classifiers are k-nearest neighbor (kNN), Gaussian mixture 
model (GMM), hidden Markov model (HMM), artificial neural networks (ANN), and support 
vector machines (SVMs), which have been well defined in many literature. While all of these 
continue to be used today, modifications and hybrid classification algorithms have been 
proposed over the years. Also, deep learning methods, such as deep neural networks (DNNs), 
have gained significant attention in various pattern recognition problems in recent years. 

The classification performance of an ASR system is mostly reported using the classification 
accuracy which can be given in percentage as number of correctly classified test samples 
divided by the total number of test samples. The error rate (ER) can also be used for this 
purpose which can be stated as the number of misclassified test samples divided by the total 
number of test samples. 

In this work, we focus on the features and classifiers used in ASR systems as seen through 
applications in content-based audio classification and retrieval, audio surveillance, sound 
event recognition, and environmental sound recognition. Due to its widespread usage in ASR 
systems and being a relatively new classifier, we put particular emphasis on SVMs. We also 
give an overview of DNNs which has seen an increased usage in speech recognition systems 
recently and employed in some ASR systems as well. In addition, we review literature in 
noise robust sound recognition and feature optimization methods, and discuss some of the 
lesser known applications of ASR. 

2.0 Feature Extraction muscle 

2.1 Time and Frequency Domain Features 

One of the early works in content-based audio classification and retrieval is by Wold et al. [1] 
which also found commercial success and was called Muscle Fish (www.musclefish.com). It 
utilized some low-level acoustical features, such as loudness, pitch, brightness or spectral 
centroid (SC), and bandwidth (BW), with a nearest neighbor (NN) classifier based on 
normalized Euclidean distance. The sound database had 409 sounds files belonging to 16 
classes: alto trombone, animals, bells, cello bowed, crowds, female, laughter, machines, 
male, oboe, percussion, telephone, tubular bells, violin bowed, violin pizz, and water. 
Content-based retrieval has been the main application of this work with Virage Inc., BBC, 
and Kodak amongst its licensees [16]. 

Some other commonly used time and frequency domain features include zero-crossing rate 
(ZCR), short-time energy (STE), subband energy (SBE), spectral flux (SF), and spectral roll-
off (SR). While time and frequency domain features continue to be used in ASR systems, 
such as in audio surveillance applications [8, 17], they are often only used as supplementary 
features.  

2.2 Cepstral Features 

2.2.1 MFCCs 

Li [2] used the Muscle Fish database and improved the ER when compared to [1] with the 
introduction of mel-frequency cepstral coefficients (MFCCs) as features and the nearest 
feature line (NFL) [18] method of classification. Humans are better at differentiating small 
changes in pitch at low frequencies than at high frequencies. MFCCs equally space the 
frequency bands on the mel-scale which more closely resembles how humans perceive sound 
when compared to linearly spaced cepstrums. In addition, a cepstrum gives information about 
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how the frequencies change in different spectrum bands. Therefore, a combination of mel-
scale and cepstrum make MFCCs useful in audio classification.  

In computation of MFCCs, firstly, the discrete Fourier transform (DFT) is applied to the 
windowed signal as 
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where N is the length of the window, 𝑥ሺ𝑛ሻ is the time-domain signal, 𝑋ሺ𝑘, 𝑡ሻ is the 𝑘௧ 
harmonic corresponding to the frequency 𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄  for the 𝑡௧ frame, 𝐹௦ is the sampling 
frequency, and 𝑤ሺ𝑛ሻ is the window function. 

The conversion from frequency in Hz, 𝑓ு௭, to frequency in mel, 𝑓ெ, can be given as [19] 
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The center frequency for the 𝑚௧ filter can be computed as 
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where all the frequency values are given in mel, 𝑓 and 𝑓 are the minimum and maximum 
cut-off frequencies, respectively, and 𝑀ଵ is the total number of mel-filters. The adjacent 
filters overlap such that the lower and upper end of a filter are located at the center frequency 
of the previous and next filter, respectively, while the peak of the filter is at its center 
frequency.  

For the 𝑡௧ frame, the output of the 𝑚௧ filter, referred as filter bank energies, can then be 
determined as 
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where 𝑉ሺ𝑚, 𝑘ሻ is the normalized frequency response. 

The MFCCs are obtained as the discrete cosine transform (DCT) of the log compressed filter 
bank energies given as 
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where 𝐿 is the order of the cepstrum. 

The number of filters in the bank is normally in the range of 20-24 with 19 filters used in [2], 
20 filters in [8, 20], 23 filters in [10, 17] and 24 filters in [9]. In addition, the first and second 
derivatives of the coefficients, commonly known as delta and delta-delta coefficients, 
respectively, which provide trajectories of MFCCs over time, are often appended to improve 
the classification performance of ASR systems. The delta coefficients can be computed as 
[21] 
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where 𝑐∆ሺ𝑖, 𝑡ሻ is the 𝑖௧ delta coefficient in the 𝑡௧ frame and the value of 𝐷 is often set to 2. 
The same formula can be applied to the delta coefficients to compute the delta-delta 
coefficients, 𝑐∆ି∆ሺ𝑖, 𝑡ሻ. 

The feature vector for each sound signal is often represented by the mean and standard 
deviation values along each feature dimension. However, to reduce the effect of different 
environmental conditions, the coefficients are often normalized before feature vector 
formation. Cepstral mean and variance normalization (CMVN) is the most common data 
normalization method which can be given as 
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where 𝜇ሺ𝑖ሻ and 𝜎ሺ𝑖ሻ are the mean and variance along the 𝑖௧ dimension, respectively. 
Another data normalization method scales the data in the range ሾ0 1ሿ, referred as cepstral 
scaling (CS), which can be given as 
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where 𝑚𝑎𝑥൫𝑐ሺ𝑖ሻ൯ and 𝑚𝑖𝑛൫𝑐ሺ𝑖ሻ൯ are the maximum and minimum data values along the 𝑖௧ 
dimension, respectively. These formulas also apply to normalization of delta and delta-delta 
coefficients.  

In [2], the audio is first classified as silent and non-silent where silent is defined as one which 
has the sum of the signal magnitude below a certain threshold. The mean and standard 
deviation of the features extracted from the non-silent features are then concatenated to form 
the feature vector with normalized values. The leave-one-out test is carried out first where 
each of the 409 sounds are used as query but the query sound is not used as a prototype. A 
combination of cepstral features and perceptual features, which includes total spectrum 
power, subband powers, brightness, bandwidth, and pitch, gives an improved performance 
than the individual features. The combined feature vector gives an error rate of 9.78% which 
is better than the error rate of 19.07% for the Muscle Fish system [1]. In the second test, 
evaluation is done using separate training and test sets, 211 files and 198 files, respectively. 
An error rate of 9.60% is achieved which is once again using a combination of cepstral and 
perceptual features. 

While MFCCs are still probably the most common feature in both speech and sound 
recognition applications, it has been shown to perform poorly in noisy conditions [9, 22]. 
Multi-conditional training is one solution to this problem but it requires large datasets to 
capture the variations in environmental conditions.  

A commonly used solution seen in speech recognition is root compression. Log spectrum 
compression used in conventional cepstral analysis is sensitive to noise [23]. The peaks of the 
mel-filter bank energies are important in characterizing the sound but the log compression 
can create high variations in the cepstral coefficients for low energy components [24]. Root 
cepstrum was proposed in [25] to improve the robustness of MFCCs. Root compressed 
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cepstral coefficients are computed similar to the conventional method but root compression is 
applied to the filter bank energies instead of log compression which can be given as 
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where 𝛾 is the root value used to compress the filter bank energies, 0 ൏ 𝛾  1. In the event 
𝛾 ൌ 1, the filter bank energies are uncompressed which is often referred as linear cepstral 
coefficients. When evaluated on an audio surveillance database in [8], linear MFCCs were 
shown to give significant improvement in classification accuracy at low signal-to-noise ratios 
(SNRs) and also found to be more effective for feature vector combination. 

In some other variations of MFCCs, in [26], independent component analysis (ICA) MFCCs 
are proposed for recognizing home environment sounds under air-conditioner noise for home 
automation. In [27], power normalized cepstral coefficients (PNCCs) [28] were shown to 
outperform MFCCs under various noise conditions and noise levels, including reverberant 
environments. 

2.2.2 GTCCs 

Gammatone cepstral coefficients (GTCCs) are a more recent addition to the family of 
cepstral features. GTCCs employ a gammatone filter, a linear filter which models the 
frequency selectivity property of the human cochlea. The most commonly used cochlea 
model is that proposed by Patterson et. al. [29] which is a series of bandpass filters with the 
bandwidth given by equivalent rectangular bandwidth (ERB). An efficient implementation of 
the gammatone filter bank has been provided in [30] which has been closely followed in 
speech [31] and non-speech [32] recognition applications. 

Extraction of GTCCs follows the same procedure as MFCCs except that gammatone filters 
are used instead of mel-filters. The impulse response for the gammatone filter can be given as 
[29] 

   1 2 cos 2j Br
cg r Ar e f r      (10) 

where 𝐴 is the amplitude, 𝑗 is the order of the filter, 𝐵 is the bandwidth of the filter, 𝑓 is the 
center frequency of the filter, 𝜙 is the phase, and 𝑟 is the time. 

The ERB is used to describe the bandwidth of each cochlea filter in [29]. ERB is a 
psychoacoustic measure of the auditory filter width at each point along the cochlea and can 
be given as 
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where 𝑄 is the asymptotic filter quality at high frequencies and 𝐵 is the minimum 
bandwidth for low frequency channels. The bandwidth of a filter can then be approximated as 
𝐵 ൌ 1.019 ൈ 𝑓,ாோ. The three commonly used ERB filter models are given by Glasberg and 
Moore [33] (𝑄 ൌ 9.26, 𝐵 ൌ 24.7, and 𝑝 ൌ 1), Lyon’s cochlea model as given in [34], 
(𝑄 ൌ 8, 𝐵 ൌ 125, and 𝑝 ൌ 2), and Greenwood [35] (𝑄 ൌ 7.23, 𝐵 ൌ 22.85, and 
𝑝 ൌ 1). 

The cochlea has thousands of hair cells which resonate at their characteristic frequency and at 
a certain bandwidth. In [30], the mapping between center frequency and cochlea position is 
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determined by integrating the reciprocal of (11) with a step factor parameter to indicate the 
overlap between filters. This can then be inverted to find the mapping between filter index 
and center frequency which can be given as 
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where 𝑓 is the maximum frequency in the filter bank, 𝑀ଶ is the number of gammatone 
filters, and 𝑠 is the step factor given as 
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where 𝑓 is the minimum frequency in the filter bank. 

A 4th order gammatone filter with four filter stages and each stage a 2nd order digital filter is 
described in [30] and an implementation provided in the Auditory Toolbox for Matlab [36]. 

Valero and Alías [32] performed a detailed analysis on MFCCs and GTCCs and concluded 
that GTCCs are more effective than MFCCs in representing the spectral characteristics of 
non-speech audio signals, especially at low frequencies. 

2.3 Time-Frequency Image Features 

Every sound signal produces a unique texture which can be visualized using a spectrogram 
image. The intensity values of the spectrogram image represent the dominant frequency 
components against time. This can be utilized to improve the recognition rate of sounds in the 
presence of additive noise, provided the noise spectrum does not contain strong spectral 
peaks which corrupt the dominant sound signal components. This was demonstrated by 
Paliwal [37] where spectral subband centroids (SSCs) were used as supplementary features 
for improved robustness in speech recognition. Some similar works in ASR are discussed 
below. 

2.3.1 Central Moments 

For sound event recognition, Dennis et al. [9] extract central moments as features from the 
spectrogram image of sound signals which they refer as the spectrogram image feature (SIF). 
They consider both grayscale and quantized spectrogram image representations. To obtain the 
spectrogram image, the linear values are firstly obtained from the DFT values as 

   , ,LinearS k t X k t  (14) 

   , log , .LogS k t X k t  (15) 

These values are normalized in the range ሾ0,1ሿ which gives the grayscale spectrogram image 
intensity values. The normalization is given as 

     
   
, min

, .
max min

S k t S
I k t

S S





 (16) 

These values are then quantized and mapped onto the red, green, and blue (RGB) 
monochrome components of a color space. The HSV color space was used in this case and 
the mapping of the grayscale image to the monochrome image can be given as 

      1 2, , , ,...q c Nk t h I k t q q q q     (17) 
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where 𝜂 is a monochrome image (R, G, or B), h a nonlinear mapping function, and q the 
quantization regions. 

Each image is then partitioned into 9 ൈ 9 blocks and second and third central moments are 
computed in each block as features. The 𝑣௧ central moment for any given block of image 
can be determined as 
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where 𝑍 is the sample size or the number of pixels in the block, 𝐼௭ is the grayscale intensity 
value of the 𝑧௧ sample in the block, and 𝜇 is the mean grayscale intensity value of the block. 

For experimentation, 60 sound classes are taken from the Real World Computing Partnership 
(RWCP) Sound Scene database in Real Acoustic Environment [38] to give a selection of 
collision, action, and characteristics sounds. Each class has 80 files of which 50 files are 
randomly selected for training and 30 files are used for testing. Four noise types: speech 
babble, destroyer control room, factory floor 1, and jet cockpit 1 from NOISEX-92 database 
[39] are added at 20dB, 10dB, and 0dB SNRs to test the robustness of the proposed approach. 
While MFCCs were seen to produce higher classification accuracy under clean conditions, 
the results using the SIF method were much better at low SNRs. The best results for training 
with clean signals were between 74-77% at 0dB SNR for the four noise types. This was 
achieved using the SIF method, quantized linear spectrogram, and HMM classification, 
implemented using the HTK toolkit [40]. For babble noise, with multi-conditional training, 
training with clean signals and at 20dB and 10dB SNRs, the accuracy at 0dB SNR increased 
from 74.4% to 79.4% which was using the quantized log spectrogram. 

The SIF with reduced feature dimensions, referred as reduced SIF (RSIF), is proposed for an 
audio surveillance application in [8]. For the RSIF, the mean and standard deviation values of 
the central moment values are computed along the rows and columns of the blocks. These are 
concatenated to form the feature vector which is 2.25 times smaller than the SIF but without 
compromise in classification performance. Experimentations are carried out on 10 sound 
classes: alarms, children voices, construction, dog barking, footsteps, glass breaking, 
gunshots, horn, machines, and phone rings. Each class contains multiple subclasses and the 
sound files are largely obtained from the RWCP Sound Scene database in Real Acoustic 
Environment [38] and the BBC Sound Effects library [41]. The performance is evaluated 
under three different noise environments taken from the NOISEX-92 database [39]: speech 
babble, factory floor 1, and destroyer control room. The feature vector combination of RSIF 
and linear MFCCs produced significantly better results, especially at low SNRs, with a 
classification accuracy of 97.11%, 96.06%, 93.61%, 89.15%, and 70.95% under clean 
conditions and at 20dB, 10dB, 5dB, and 0dB SNRs, respectively. 

2.3.2 GLCM 

Gray-level co-occurrence matrix (GLCM), also known as gray-tone spatial dependence 
matrix [42], is an image processing based texture analysis technique which has been extended 
to texture analysis of sound signal time-frequency images. GLCM gives the spatial 
relationship of pixels in an image. It is a matrix of frequencies where each element ሺ𝑖, 𝑗ሻ is 
the number of times intensity value 𝑗 is located at a certain distance and angle, given by the 
displacement vector ሾ𝑑 𝑑௧ሿ, where 𝑑 is the offset in the 𝑦 direction and 𝑑௧ is the offset in 
the 𝑥 direction, from intensity value 𝑖 in an 𝑁௧ ൈ 𝑁 image 𝐼. Mathematically, this can be 
given as 
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where the size of the output matrix is 𝑁 ൈ 𝑁, 𝑁 is the number of quantized gray levels. 
The typical angles for computing the GLCM are 0°, 45°, 90°, and 135° corresponding to the 
displacement vector ሾ0 𝑑ሿ, ሾെ𝑑 𝑑ሿ, ሾെ𝑑 0ሿ, and ሾെ𝑑 െ 𝑑ሿ, respectively. 

After computing the GLCM, the fourteen textural descriptors proposed in [42], a subset of 
these descriptors, or new descriptors are often extracted as features. This approach has been 
utilized in a number of applications involving image texture analysis and some recent 
examples include diagnosis of abdominal tumors using texture classification of ultrasound 
images [43] and mammogram texture classification for breast cancer detection [44].  

Costa et al. [45] applied this technique to texture classification of spectrogram images for 
music genre recognition. Their audio database consists of 900 music pieces from 10 music 
genres taken from the Latin music database [46]. The audio signal is first converted to a 
spectrogram using time decomposition [46] and the GLCM texture descriptors are extracted 
as features using a zoning technique, that is, the spectrogram image is divided into horizontal 
sections, with a total of 10 zones, and analysis is carried out in each zone. The following 
seven textural descriptors are utilized: entropy, correlation, homogeneity, third order 
momentum, maximum likelihood, contrast, and energy.  The results are compared against 
those in [47] which takes an instance-based approach with feature vectors represented by 
short-term, low-level characteristics of the music audio signal. Only a marginal increase is 
seen in the average classification accuracy, increasing from 59.6% to 60.1%, but results 
showed an improvement of about 7% with a combination of the two methods.  

In a face recognition problem [48], however, instead of extracting the textural descriptors as 
features, the matrix values itself form the feature vector. This was generally shown to give 
significantly better results than using the combined fourteen textural descriptors as features. 
This technique was adopted in an audio surveillance application in [49] which was referred as 
the spectrogram image texture feature (SITF). Analysis was performed independently in 
frequency subbands and the final feature vector is a concatenation of the feature vectors from 
each subband. When tested with the same databases and experimental setup as in [8], the 
SITF gave significantly better classification performance at low SNRs and a better overall 
performance when compared to MFCCs, SIF, and RSIF. 

2.3.3 Other Time-Frequency Representations 

Short-time Fourier transform (STFT) is probably the most commonly used time-frequency 
image representation. In this representation, the frequency components are equally spaced 
with constant bandwidth. However, most sound signals hold greater frequency components in 
the lower frequency range and less frequency components in the upper frequency range. As 
such, some information is lost in the lower frequency components while the higher frequency 
components hold little information in this time-frequency representation. 

Mel-spectrogram and gammatone-spectrogram, also known as cochleagram, are variations of 
the STFT spectrogram utilizing the mel-filter and gammatone filter, respectively. Both these 
filters have more frequency components in the lower frequency range with smaller 
bandwidths and fewer frequency components in the higher frequency range with longer 
bandwidths. This makes their corresponding time-frequency representation more suitable for 
feature extraction. Cochleagram image-based feature extraction, in particular, has found 
usage in speech recognition [50] and audio separation [51] applications. This time-frequency 
representation was also used in an audio surveillance application in [52]. After filtering the 
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signal with the gammatone filter, the energy in the windowed signal for each frequency 
component is added which can be given as 
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where 𝑥ොሺ𝑛ሻ is the gammatone filtered signal and 𝐶ሺ𝑚, 𝑡ሻ is the 𝑚௧ harmonic corresponding 
to the center frequency 𝑓 for the 𝑡௧ frame. 

These values are then normalized using (16) to get the grayscale cochleagram image intensity 
values. Cochleagram image feature extraction improved the average classification 
performance of SIF, RSIF, and SITF, now referred as CIF, RCIF, and CITF, respectively, 
from 75.89%, 81.08%, and 85.62% to 86.30%, 89.03%, and 89.24% with significantly 
improved results at low SNRs. Further improvement in classification performance was also 
achieved when combined with linear GTCCs. Illustration of spectrogram and cochleagram 
image for a construction sound signal can be found in Figure 2 [52]. 

     (a) 
 

       (b)
Figure 2: Spectrogram and cochleagram images for a sample sound signal from construction 

sound class. (a) Spectrogram image and (b) cochleagram image. 

Wavelet transform [53] also provides time-frequency representation of a signal and has an 
advantage over Fourier transform in that it provides better time and frequency localization. 
Nilufar et al. [54] use wavelet packet decomposition [55], an extension of wavelet transform 
that includes more signal filters, for robust speech and music discrimination. This technique 
is applied to the spectrogram to transform it into different subbands containing texture 
information. Multiple kernel learning (MKL) [56] is used to select the optimal subbands for 
discriminating the two classes. 

2.4 Sparse Decomposition 

Sparse decomposition aims to decompose a given input signal as a linear combination of a 
defined number of elementary signals from a large linearly dependent collection. While there 
are a few algorithms for this, such as basic pursuit (BP) [57], matching pursuit (MP) seems to 
be the most often used in ASR applications. 

Chu et al. [10] consider MP in environmental sound recognition. Their sound database 
consists of fourteen environment types, taken from BBC sound effects library [41] and the 
Freesound project [58], which are as follows: inside restaurants, playground, street with 
traffic and pedestrians, train passing, inside moving vehicles, inside casinos, street with 
police car siren, street with ambulance siren, nature-daytime, nature-nighttime, ocean waves, 
running water/stream/river, raining/shower, and thundering.  

In simple terms, MP, originally proposed by Mallat and Zhang [59], allows extraction of 
time-frequency features through the sparse linear expansion of a waveform. This is done by 
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decomposing signals using an overcomplete dictionary of functions, such as Gabor dictionary 
[59] as used in their work. Other available dictionaries are wavelets [60], wavelet packets 
[61], multiscale Gabor dictionaries [62], and chirplets [63]. An overcomplete dictionary 
ensures that the signal converges to a solution with zero residual energy and, therefore, 
results in the best set of functions to approximate the original representation.  

As explained in [10], given a dictionary D containing parameterized waveforms 𝜙ఊ as 

 :D     (21) 

where Γ is the parameter set and 𝜙ఊ is called an atom, the approximate decomposition of a 
signal x can then be given as 

 
1

,  1,2,...,
i i

a a

i
x R i a  


    (22) 

where 𝑅ሺሻ is the residual. Given x, a, and D, the goal is to determine indices 𝛾 and compute 
𝜙ఊ

 while minimizing 𝑅ሺሻ with the initial approximation 𝑥ሺሻ ൌ 0 and 𝑅ሺሻ ൌ 𝑎. The 
sequence of sparse approximation is done stepwise using MP.  

In [10], frequency and scale parameters are extracted from each atom as features together 
with the mean and standard deviation for each parameter, with five determined as the 
optimum number of atoms. A combination of MFCCs and MP features produced the highest 
classification accuracy at 83.9% using GMM classification. 

Interestingly, they also gave a listening test to 18 individuals which produced an overall 
accuracy of 77%, 82%, and 85% for an audio clip of 2, 4, and 6 seconds, respectively. The 
confidence level of the individuals were also measured with each answer which showed 
direct correlation with the accuracy. Potential short falls in the listening test, such as short 
duration of clips, were discussed against the results in [64] where listening tests produced 
better results than the ASR system. 

In addition, Scholler and Purwins [65] consider MP for signal approximation with sparse 
optimization method [66] for drum sound classification. Data samples from ENST database 
[67] and RWC Music Database: Musical Instrument database [68] are used and the following 
features are considered: MP features using a sparse coding dictionary (SC-MP), MP feature 
using a gammatone dictionary (GT-MP), and timbre descriptors (TD). Apart from the three 
individual feature sets, the combination of TD with SC-MP and GT-MP is also considered. 
Results are compared under clean conditions and at 20dB, 10dB, 0dB, and -10dB SNRs with 
the addition of white Gaussian noise. When trained with clean samples only, the overall 
performance of the MP features was much better than TD features. While all the features 
gave comparable results under clean conditions, MP features performed much better under 
noisy conditions, except at -10dB and 0dB SNRs, where all features gave poor results. For 
TD features, the addition of MP features and multi-conditional training improved the 
classification accuracy but the overall performance of the individual MP features was still 
better. 

2.5 Feature Optimization 

The addition of new features to a baseline feature set does not necessarily improve the 
classification accuracy as some features or feature dimensions are ineffective, depending of 
the application. Optimization techniques have been used in some literature to determine the 
optimal feature set. For musical instrument classification, Essid et al. [69] consider various 
features which can be broadly classified as: temporal, cepstral, spectral, amplitude 
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modulation (AM) [70], and octave band signal intensities (OBSI) [69]. Two feature selection 
methods, inertia ratio maximization using feature space projection (IRMFSP) [71] and 
genetic algorithms (GAs) [72, 73] are experimented with. Class pairwise feature selection 
with a fusion of the two optimization techniques was found to be most effective in 
discriminating between possible pair of instrument classes, giving a better overall 
performance as a result.  

Alexandre et al. [5] argue the computational limitations of digital signal processing hardware 
in a hearing aid application. GA with restricted search [74] is proposed to select the optimal 
features so that the feature vector dimension could be reduced and the computation speed 
increased as a result. Three main classes are considered: speech in quiet, speech in noise, and 
noise. A two-layer structure is adopted for classification. The first layer distinguishes 
between speech and non-speech (noise) and the second layer classifies speech files into either 
a quiet environment or a noisy environment. They consider 38 features, mostly cepstral and 
time and frequency domain features, with the final feature vector 76-dimensional. The results 
show that while the unconstrained GA required 43 and 46 features to get the best probability 
of correct classification for the two classification problems, respectively, only 11 features are 
shown to give comparable performance using restricted GA, which is also always slightly 
better than the sequential methods [75], sequential forward search (SFS) and sequential 
backward search (SBS). 

Chmulik and Jarina [76] experiment with particle swarm optimization (PSO) [77] and GA to 
select the optimum features from a collection of 20 audio feature descriptors, extracted using 
the YAAFE toolbox [78], for classification of six sound classes: applause, crying, laughing, 
speech, music, and noise. While comparable classification accuracy is achieved using both 
the optimization techniques, PSO gives the highest classification accuracy at 82.48% with a 
feature dimension of 86. This is much better than the classification accuracy with all the 
features included which is 72.94% with a feature dimension of 137. This shows that the 
inclusion of ineffective features not only increases the computation time but can also reduce 
the classification performance. 

3.0 Classifiers 

In this review, we focus on two relatively new classifiers, SVMs and DNNs. We provide a 
brief background on the two classifiers and discuss their classification performance. 

3.1 Support Vector Machines 

3.1.1 Binary SVM 

SVM is a statistical learning classifier developed for binary classification. The initial SVM 
was a linear classifier proposed by Vapnik and Lerner in 1963 [79]. This was extended to 
nonlinear datasets by Boser, Guyon, and Vapnik in 1992 [80] and has gained widespread 
attention since the late '90s, around the same time research in ASR was generating interests. 
We provide a theoretical background of binary SVMs and then discuss the multiclass 
classification methods of SVMs. We then compare the performance of SVMs against other 
classification methods and also compare the performance of the multiclass classification 
methods. 

3.1.1.1 Basic Theory 

As described in [80-82], a support vector machine determines the optimal hyperplane to 
maximize the distance between any two given classes. Starting with a case of linearly 
separable dataset, consider a set of 𝑙 training samples belonging to two classes given as 
ሼሺ𝐱ଵ, 𝑦ଵሻ, … , ሺ𝐱, 𝑦ሻሽ, where 𝐱 ∈ 𝑅ௗ is a 𝑑-dimensional feature vector representing the 𝑖௧ 
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training sample, and 𝑦 ∈ ሼെ1, 1ሽ is the class label of 𝐱. The optimal hyperplane can be 
determined by minimizing ½‖𝐰‖ଶ subject to 𝑦ሺ𝐰 ∙ 𝐱  𝑏ሻ  1, where 𝐰 ∈ 𝑅ௗ is a normal 
vector to the hyperplane and 𝑏 is a constant. Solving this using classical Lagrangian duality 
gives the solution 

1

l

i i i
i

y


 w x  (23) 

where 𝛼 are the non-negative Lagrange multipliers. The 𝐱 for which 𝛼  0 are called the 
support vectors which lie exactly on the margin satisfying 𝑦ሺ𝐰 ∙ 𝐱  𝑏ሻ ൌ 1, 𝑖 ൌ 1, 2, … 𝑙. 
The offset can then be determined as 

i ib y  w x  (24) 

using any support vector or averaged over all support vectors. 

For linearly nonseparable problems, the optimization can be generalized by introducing the 
concept of soft margin [81]. Introducing non-negative slack variables 𝜉 which measure the 
degree of misclassification of data 𝐱 and a penalty function ∑ 𝜉 , the optimization is a trade-
off between a large margin and a small error penalty. The solution is similar to the separable 
case except for a modification to the Lagrange multipliers: 0  𝛼  𝐶, 𝑖 ൌ 1, 2, … 𝑙, where 𝐶 
is a penalty or tuning parameter to balance the margin and training error. 

In applications where linear SVM does not give satisfactory results, nonlinear SVM is 
suggested which aims to map the input vector 𝐱 to a higher dimensional space 𝐳 through 
some nonlinear mapping 𝜙ሺ𝐱ሻ chosen a priori to construct an optimal hyperplane. The kernel 
trick [80] is applied to create the nonlinear classifier where the dot product is replaced by a 
nonlinear kernel function 𝐾൫𝐱, 𝐱൯ which computes the inner product of the vectors 𝜙ሺ𝐱ሻ 
and 𝜙൫𝐱൯. A commonly used kernel function is Gaussian radial basis function (RBF) given 

as 𝐾൫𝐱, 𝐱൯ ൌ exp ቀെฮ𝐱 െ 𝐱ฮ
ଶ

/2𝜎ଶቁ, where 𝜎  0 is the width of the Gaussian function. 

The classifier for a given kernel function with the optimal separating hyperplane is then given 
as 
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3.1.1.2 Multiclass Classification 

Being a binary classifier, a number of techniques have been proposed for multiclass 
classification. The most common technique is to reduce the multiclass classification problem 
into multiple binary classification problems. Four commonly used methods based on this 
technique are one-against-all (OAA), one-against-one (OAO), decision directed acyclic graph 
(DDAG), and adaptive directed acyclic graph (ADAG).  

OAA is probably the earliest of the multiclass SVM classification techniques [82]. For a 𝑃-
class problem, 𝑃 binary SVM classifiers are constructed and evaluated where the 𝑖௧ 
classifier is trained with all the training samples from the 𝑖௧ class as positive labels and all 
the remaining samples as negatives labels. During classification, a sample 𝐱 is classified in 
the class with the largest value of the decision function which can be given as 

    
1,2,...,
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The OAO approach distinguishes between every pair of classes and classification is done 
using the max-wins voting strategy [83]. For a 𝑃-class problem, OAO-SVM constructs and 
evaluates 𝑃ሺ𝑃 െ 1ሻ 2⁄  classifiers where each SVM is trained on samples from two classes at 
a time, that is, using training samples from the 𝑖௧ and 𝑗௧ classes. During classification, the 
class label of a test sample is predicted as 

    
1,2,...,

1,

arg max sgn .
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ij ij

i P
j j i

f b


 

  x w x  (27) 

DDAG [84] and ADAG [85] are also based on classification between pair of classes but 
utilize a decision tree structure in the testing phase. Similar to OAO-SVM, 𝑃ሺ𝑃 െ 1ሻ 2⁄  
nodes are created during training phase but only 𝑃 െ 1 nodes are used during evaluation. 

3.1.1.3 Comparison of SVM with Other Classifiers 

Guo and Li [3] use the Muscle Fish database and similar features as in [2], that is, cepstral 
and perceptual features. However, a new metric called distance-from-boundary (DFB) is 
proposed for audio retrieval using SVMs to learn the boundaries. Using the same feature 
vector formation technique as [2], SVM performed better than NN, kNN, and NC (nearest 
center) classifiers. The lowest error rate is 11.00% for the leave-one-out test but 8.08% with 
separate training and test sets. 

In another similar work, Lu et al. [86] consider five audio classes: silence, music, background 
sound, pure speech, and non-pure speech. SVM, with a Gaussian RBF kernel, is used for 
classification. For experimentation, a database with 2600 audio clips is created with a total 
duration of about 4 hours obtained from TV programs, internet, audio, and music CDs. When 
tested under different testing units (durations), in general, kNN classifier gave higher results 
than GMM while the SVM classifier always outperformed kNN and GMM classifiers. 

In [87], multi-layer perceptron (MLP) neural network, trained using the Levenberg-
Marquardt (LM) [88] back-propagation algorithm, and SVM, with a polynomial kernel, are 
experimented for classification for automatic ontology generation for musical instruments. 
The average classification accuracies for the MLP classifier were 76.0% and 46.7% for solo 
music and isolated notes, respectively, which increased to 83.0% and 86.3% with SVM 
classification. 

In general, SVM has been seen to give a better classification performance than most 
traditional classifiers. In [9], HMM gives a better classification performance than SVM, 
however, they used linear SVM. Linear SVM is generally considered not suitable for 
complex classification tasks and most other similar works use nonlinear SVM. Results in [17] 
show that there isn’t a significant difference between HMM and binary SVMs. In addition, it 
is important to tune the parameters 𝐶 and 𝜎 correctly, avoiding local minima, for best results. 

3.1.1.4 Comparison of Multiclass Classification Methods 

There are various pattern recognition problems where multiclass SVM classification methods 
have been compared. Hsu and Lin [89] compare the performance of OAA, OAO, DDAG and 
two altogether methods, an approach for multiclass problems by solving a single optimization 
problem, on large classification problems. They conclude OAO and DDAG as being more 
suitable for practical use. A similar comparison is done by Seo [90] using OAA, OAO, 
DDAG together with the approach given by Weston and Watkins [91] and Crammer and 
Singer [92] for a face recognition application. While OAO was found to give marginally 
better results than DDAG, DDAG is suggested due to its low computational cost.  
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Various modifications to the multiclass SVM classification methods have also been proposed 
in literature. Liu and Zheng [93] introduce static reliability measures (SRM) and dynamic 
reliability measures (DRM) to improve the accuracy of OAA classification method. Kumar 
and Gopal [94] present reduced one-against-all (R-OAA), based on sample subset selection, 
which has a reduced computational time. Yang et al. [95] propose a partition based binary 
tree for the OAA method which has a faster training and evaluation time when compared to 
OAA and R-OAA. An optimized DAG method is proposed by Takahashi and Abe [96]. 
Another improvement to DAG, based on binary decision tree and Huffman code [97], is 
given by Chen and Liu [98]. Fei and Liu [99] propose a binary tree of support vector machine 
(BTS) which uses one-to-one training scheme but reduces the total number of classifiers by 
employing a probabilistic model. It gives a higher classification efficiency, that is, gives 
comparable classification accuracy to the traditional methods but is generally faster.  

In general, the difference in the classification accuracy of the various multiclass SVM 
classification methods which have been proposed is marginal and the preference of one 
method over the others is largely based on faster training and/or evaluation times. However, 
most of these comparisons are limited to clean conditions only. In [8], the performance of 
OAA, OAO, DDAG, and ADAG multiclass SVM classification methods are compared under 
noisy conditions. The OAA classification method is seen to be the most noise robust and also 
gave a significantly better performance with feature vector combination. In addition, it 
required a significantly lower evaluation time than OAO but was slower than DDAG and 
ADAG methods. 

3.1.1.5 Hybrid Classifier 

Use of a hybrid SVM/kNN classifier using MPEG-7 audio descriptors can be found in [100]. 
MPEG-7, formally called “Multimedia Content Description Interface”, is a multimedia 
content description standard [101] which provides a comprehensive range of descriptors and 
descriptor schemes ranging from low level audio and video features to high level semantic 
features. Three MPEG-7 audio low-level descriptors, spectrum centroid, spectrum spread, 
and spectrum flatness, are used as features for classifying 12 sound classes: male speech, 
female speech, cough, laughing, screaming, dog barking, cat meowing, frog wailing, piano, 
glass breaking, gun shooting, and knocking. A frame-based classification strategy is used for 
the hybrid classifier where the output of the SVM classifier, using a RBF kernel and DDAG 
multiclass classification method, and kNN classifier are turned into probabilistic scores which 
are used to get a combined frame score. An unknown sound signal is then assigned to the 
class which most of the frames are assigned to. With 50% of the samples used for training 
and 50% for testing, a maximum classification accuracy of 85.1% is achieved using the 
hybrid classifier when compared to a maximum of 83.2% using HMM classification. 
However, the results are not compared to the standard SVM and kNN classification methods.  

3.1.2 One-Class SVM 

Unlike the binary SVMs considered so far, one-class SVM (1-SVM) is used in an audio 
surveillance application by Rabaoui et al. [17]. 1-SVM, proposed by Schölkopf et al. [102], is 
a modification of binary SVM to solve one-class classification problem. The feature is 
transformed by the kernel and the origin is treated as the second class. 1-SVM essentially 
separates the feature data points from the origin and maximizes the distance from this 
hyperplane to the origin. 

1-SVM is more suited with high dimensional feature vectors. As such, unlike most other 
work where mean and standard deviation values of the extracted features across all frames are 
concatenated to form the feature vector, a slightly different approach to feature data 
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representation is taken in [17]. The overall feature data for the sound signal is divided into 
three portions: 30%, 40%, and 30% of the total number of frames. Mean value of the data 
across each dimension from each portion are concatenated to form the feature vector which 
results in a feature dimension which is 1.5 times longer than the conventional technique. The 
classification accuracy of 1-SVM was generally higher than HMM, OAA-SVM, and OAO-
SVM classification methods when tested at various SNRs with a number of individual and 
combined features. 

3.2 Deep Neural Networks 

While SVMs have seen an increased usage in ASR systems, a new machine learning 
algorithm called deep learning is generating a lot of interest in speech recognition. Deep 
learning aims to learn high-level representations of data through a hierarchy of intermediate 
representations, such as deep neural networks (DNN) [103]. It has been used for acoustic 
modeling by research groups at University of Toronto, Microsoft Research, Google, and IBM 
Research, amongst others, and shown to outperform most other classification methods [104]. 
Furthermore, in two recent works in acoustics event classification [105, 106], DNN was 
shown to perform better than other classifiers. However, these works compare the 
classification performance using mel-frequency cepstral coefficients (MFCCs) only.  

In another recent work in SER [107], the classification performance of SVM and DNN 
classifiers are compared with a number of features. These include MFCCs, features extracted 
from a stabilized auditory image (SAI) [108], and the SIF [9]. The DNN classifier utilized 
has L-layers with the feature vectors on the input layer and output layer in a one-of-P 
configuration (P-classes). The DNN is constructed using individual pre-trained restricted 
Boltzmann machine (RBM) pairs. Each pair comprises V visible and H hidden stochastic 
nodes, 𝐯 ൌ ሾ𝑣ଵ, 𝑣ଶ, … , 𝑣ሿ் and 𝐡 ൌ ሾℎଵ, ℎଶ, … , ℎுሿ். Bernoulli-Bernoulli RBM structures are 
used on the intermediate and final layers while the input layer is Gaussian-Bernoulli RBM. 
Given the energy functions of the two RBM structures, 𝐸ሺ𝐯, 𝐡ሻ, the joint probability 
associated with configuration ሺ𝐯, 𝐡ሻ is given as 

    , ;1
, ; Ep e

Y
  v hv h  (28) 

where Y is a partition function given as 𝑌 ൌ ∑ ∑ 𝑒ሼିாሺ𝐯,𝐡;ఏሻሽ
௩ . 

The training data is used to estimate the RBM model parameters θ by maximum likelihood 
learning using the contrastive divergence (CD) algorithm [103]. After pre-training, a size P 
softmax output labeling layer is added to the pre-trained stack of RBMs [109] to convert a 
number of Bernoulli distributed units in the final layer into multinomial distribution. The 
stacked network is then trained using back propagation. 

DNNs generally gave significantly higher overall classification accuracy than SVM with the 
best overall feature performance achieved using the SIF. With multi-conditional training, for 
example, the average classification accuracy using SVM is 88.55% but 92.58% with DNN. 
Similar conclusions were also drawn with MFCCs and SAI features. 

4.0 Discussion and Conclusion 

In this section, we first provide a summary of some of the key advancements in ASR. We 
then discuss some relatively lesser known applications of ASR. 

4.1 Summary of Advancements 

MFCCs have evolved as a baseline feature in many ASR systems. However, it is often 
supplemented with other features such as perceptual features [2, 3] and MP-based features 
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[110] for improved classification performance. A combination of linear cepstral coefficients 
and time-frequency image features has also shown to give robust performance in [8, 52]. 
While SVMs have been the preferred classifier in most ASR applications, DNNs have gained 
popularity in recent years with its superior classification performance, as demonstrated in a 
number of pattern recognition problems. In Table I, we summarize what we believe are some 
of the key works in ASR and highlight the advancements in features and classifiers using the 
work by Wold et al. [1] as basis. 

While there has been a decent amount of development in ASR systems over these years, the 
inconsistency in the choice of sound databases in most literature makes it difficult to make 
direct comparison of the performance of the proposed techniques. While sound libraries, such 
as the Latin music database, RWCP databases, and the BBC sound effects library have been 
employed for research in certain ASR applications, the creation of the sound database for use 
from these available libraries is at the discretion of the researchers. Also, the number and 
complexity of sound classes and the amount of training data, amongst others, have a direct 
influence on the classification performance of an ASR system. Therefore, there is a need to 
standardize sound databases and experimental setups to make it easier for direct comparison 
of proposed techniques, similar to what was seen in [1-3], refer to Table 1. 

In addition, different approaches have been noticed in structuring of classes in some similar 
applications, such as audio surveillance and sound event recognition. For an audio 
surveillance application in [8, 17], a sound class has a number of sound events. For example, 
shots fired from a rifle, shotgun, and machine gun are examples of different sound events but 
would be treated as a single sound class such as gunshots. In some cases, the signal properties 
of subclasses in a particular class are similar to the subclasses in other classes but different to 
subclasses in its own class. This creates interclass similarity and intraclass diversity, 
increasing the complexity of the problem as a result.  

Moreover, there has been a lack of attention in recognition of overlapping sound events. An 
example of such a system is presented in [111] and, while there are some other similar works, 
more research is needed in this area. 

Table I: An overview of some key works in ASR 

Reference Year Application 
Sound 

Database(s) 
Noise 

Database(s) 
No. of 

Classes 
Total 
Files 

% 
Training 

data 
Best feature(s) Classifier 

Classification 
Accuracy (or 
Error Rate) 

Wold et al. [1] 1996 
Content-based 
audio 
classification 

Muscle Fish – 16 409 – Perceptual features NN 19.07% (ER)1 

Li [2] 2000 
Content-based 
audio 
classification 

Muscle Fish – 16 409 

Leave-one-
out test MFCC + 

perceptual features 
NFL 

9.78% (ER) 

51.59% 
(211/409) 

9.60% (ER) 

Guo and Li 
[3] 

2003 
Content-based 
audio 
classification 

Muscle Fish – 16 409 

Leave-one-
out test MFCC + 

perceptual features 
SVM 

11.00% (ER) 

51.59% 
(211/409)

8.08% (ER) 

Rabaoui et al. 
[17] 

2008 
Audio 
surveillance 

RWCP Sound 
Scene, 
Leonardo 
Software, 
hand recorded 

NOISEX-
92, hand 
recorded 

9 1015 70% 
(Multiple 
features2) 

1-SVM 

Clean – 96.89% 
20dB – 93.33% 
10dB – 89.22% 
5dB – 82.80% 
0dB – 72.89%

Chu et al. [10] 2009 
Environmental 
sound 
recognition 

BBC Sound 
Effects, 
Freesound 

– 14 – 75% MFCC + MP GMM 83.9% 

Dennis et al. 
[9] 

2011 
Sound event 
recognition 

RWCP Sound 
Scene 

NOISEX-92 60 4800 62.5% SIF HMM 

3Clean – 87.9% 
320dB – 88.0% 
310dB – 87.5% 
30dB – 75.5%

Sharan and 
Moir [52] 

2015 
Audio 
surveillance 

RWCP Sound 
Scene, BBC 

NOISEX-92 10 1143 66.67% 
Linear GTCC + 

CITF 
SVM 

(OAA)
Clean – 96.59% 
20dB – 96.59%
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Sound Effects 10dB – 95.36% 
5dB – 94.23% 
0dB – 83.73%

McLoughlin 
et al. [107] 

2015 
Sound event 
recognition 

RWCP Sound 
Scene 

NOISEX-92 50 4000 62.5% SIF (De-Noised) DNN 

Clean – 96.20% 
20dB – 95.80% 
10dB – 94.13% 
0dB – 85.47%

1ER as reported in [2, 3]. 
2Different combination of features are experimented with under clean and noisy conditions.  
3Average classification accuracy value over four noise types. 

4.2 Other Applications of ASR 

The applications of ASR are not limited to content-based audio classification, audio 
surveillance, sound event recognition, and environmental sound recognition, which have been 
the focus of our review so far. A summary of some less conventional applications of ASR is 
given in Table II. 

Similar to finger print recognition, face recognition, and, more recently, vein pattern 
recognition systems, heart sound recognition has the potential for human identification. Heart 
and lung sound recognition can also be used for diagnosis of disorders associated with the 
heart and lung, respectively. This extends to animals as well such as for identification of 
respiratory infections in pigs and dairy calves. Such technology can act as an early warning 
system which could help contain contagious viruses with some viruses from animals, such as 
swine flu, known to affect humans as well. Diagnosis of disorders using ASR technology 
extends beyond heart and lung sound recognition. An example of gastrointestinal motility 
monitoring system using bowel sounds, captured through abdominal surface vibrations, can 
be found in [112].  

Table II: Some lesser known applications of ASR 

Reference Application Description 
Sound 

Database(s)1 Feature(s) Classifier(s) 

Beritelli and 
Spadaccini [113] 

Biometrics 
Heart sound recognition for 
human identification 

– 
MFCC + FSR2 
(first-to-second 

ratio) 

Euclidean 
distance measure 

Kwak and Kwon 
[114] 

Biomedical 

Heart sound classification for 
diagnosis of cardiac disorder

Heart Sounds and 
Murmurs [115]

MFCC HMM, SVM 

Lei et al. [116] 
Breath sound classification for 
diagnosis of disorders 
associated with breathing

– 
MFCC + 

perceptual 
features 

SVM, ANN 

Exadaktylos et al. 
[117] 

Cough sound recognition in 
pigs 

– 
Power spectral 
density (PSD) 

Euclidean 
distance measure 

Dimoulas et al. [112] 

Gastrointestinal motility 
monitoring using bowel sounds, 
captured through abdominal 
surface vibrations

– 

Time and 
frequency 

domain features, 
wavelet analysis 

ANN 

Cai et al. [118]  

Animal species 
recognition; 
sound 
classification; 
monitoring 

Bird species recognition using 
bird calls 

Backyards [119], 
Australian bird 
calls: subtropical 
east [120] and 
voices of 
subtropical 
rainforests [121], 
and recorded data

MFCC ANN 

Jaafar and 
Ramli [122] 

Frog species recognition – MFCC kNN 

Brown and 
Smaragdis [123] 

Northern resident killer whale 
sound classification 

– MFCC HMM 

Le-Qing [124] Insect sound classification 
United States 
department of 
agriculture [125]

MFCC PNN [126] 

Milone et al. [127] 
Monitoring grazing behavior of 
cattle using ingestive sound 
classification 

– Spectral features HMM 
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Aydin et al. [128] 
Automatic measurement of feed 
intake of broiler chickens by 
detecting pecking sounds

– PSD 
(Adaptive 
threshold) 

Yao et al. [129] 
Context 
awareness 

Context awareness for social 
activity recognition and 
recommendation using audio 
data gathered from mobile 
phone 

– 
MFCC, ZCR, SF, 

SC, BW 
DTW [130] 

Tong et al. [131] Tile Inspection 
Inspection of tile wall 
exfoliation through analysis of 
impact sound

– PSD ANN 

Márquez-Molina et 
al. [132] Aircraft 

classification 

Aircraft classification using 
aircraft takeoff noise 

– 
MFCC, Octave 
analysis [133, 

134] 
ANN 

Montazer et al. [135] 
Helicopter type identification 
using rotor sound

– Energy RBFNN 

Redel-Macías et al. 
[136] 

Vehicle pass-by 
noise test

Identification of sound for pass-
by noise test in vehicles

– Spectral features ANN 

Tabacchi et al. [137] 
Classification of 
cooking stages 

Classification of cooking stages 
of boiling water using audio and 
vibration signals

– MFCC Parzen [138] 

1Sound database provided only where known. Hand recorded signals were mostly used otherwise. 
2Power ratio of the first and second heart sounds. 

In addition, ASR can be used for animal species recognition through analysis of their call 
sound. Such a system can be used to carry out automatic animal species monitoring replacing 
the laborious manual recognition process. It could also be used for environmental monitoring 
since the abundance of wildlife would generally indicate a healthy environment and vice-
versa. For example, researchers in Brisbane established a sensor network in the city’s suburbs 
and forest park to study the impact of urbanization of neighboring suburbs on the ecological 
system, with the focus on recognition of bird species using acoustic signals [118].  

Furthermore, while we have generally been looking at examples of standalone ASR systems 
so far, audio and video recognition systems could also be integrated for a more holistic 
approach to this problem, such as in the development of surveillance systems. Video 
surveillance systems have been around for many years but have limitations such as limited 
field of view and relatively expensive computation and data storage. An ASR system could 
be used to complement a video-based recognition system such as in public transports [139], 
detecting traffic events [140], fall detection [141], machine awareness [142], and in banks 
[143]. Audio and video recognition systems could also be combined for recognition of 
complex events in real movies [144]. Another such example is robotics. Robots are often 
aimed at mimicking human behavior and, similar to humans, acoustical information can be 
utilized to make a more complete description of the scene. Robotics based search and rescue 
operation is one such scenario where in the aftermath of a natural disaster, such as an 
earthquake, the injured could be behind collapsed structures and audio information such as 
screaming or crying could be used to reach them [145].  
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