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Abstract— This paper aims to diagnose croup in children 
using cough sound signal classification. It proposes the use of a 
time-frequency image-based feature, referred as the 
cochleagram image feature (CIF). Unlike the conventional 
spectrogram image, the cochleagram utilizes a gammatone 
filter which models the frequency selectivity property of the 
human cochlea. This helps reveal more spectral information in 
the time-frequency image making it more useful for feature 
extraction. The cochleagram image is then divided into blocks 
and central moments are extracted as features. Classification is 
performed using logistic regression model (LRM) and support 
vector machine (SVM) on a comprehensive real-world cough 
sound signal database containing 364 patients with various 
clinically diagnosed respiratory tract infections divided into 
croup and non-croup. The best results, sensitivity of 88.37% 
and specificity of 91.59%, are achieved using SVM 
classification on a combined feature set of CIF and the 
conventional mel-frequency cepstral coefficients (MFCCs). 

I. INTRODUCTION 

Croup is a viral infection of the respiratory tract and is 
common in children. A two-year Australian study in children 
aged 0–14 years suggests that croup is managed in the 
general practice about 154,000 times per year and is most 
prevalent in children aged 1–4 years [1]. Similarly, as 
summarized in [2], croup affects more than 80,000 children 
in Canada each year, the second most common cause of 
respiratory distress in the first 10 years of life. 

The infection caused by croup results in an inflammation 
of the upper airway restricting normal breathing. This results 
in a “barking” or “croupy” cough usually accompanied by 
stridor, hoarse voice, and respiratory distress due to airway 
obstruction [3]. Croup is typically diagnosed in clinical 
practice relying on this distinctive cough as the primary 
clinical feature. Physicians listen to cough and make a 
subjective judgment on the ‘croupiness’ or ‘barkingness’ of 
events. In this paper we propose the use of automated cough 
sound analysis to diagnose croup. 

Our work is inspired from automatic speech recognition 
(ASR) technology; in particular, we explore the performance 
of mathematical features inspired by human auditory system. 
Speech and cough share some similarities in the generation 
process and physiological wetware used. We propose the use 
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of a feature extraction method that utilizes the frequency 
selectivity of the human cochlea, applied to time-frequency 
image of cough sound signals.  

One very prominent feature in ASR is mel-frequency 
cepstral coefficients (MFCC) [4].  Introduced more than three 
decades ago, the success of MFCC could be attributed to its 
ability to adequately capture the perceptually relevant aspects 
of the short-term power spectrum of a speech signal. In our 
earlier works [5, 6] we illustrated the usefulness of MFCCs 
(in combination with other features) in diagnosing diseases 
such as pneumonia. 

Most of the dominant frequency components of the cough 
sound signal lie in the low frequency range. The conventional 
spectrogram image has evenly spaced frequency components 
with constant bandwidth which results in suppression of 
spectral information in the lower frequency range. In this 
paper, we propose a bio-inspired gammatone filter which 
offers more frequency components in the lower frequency 
range with narrow bandwidth and less frequency components 
in the higher frequency range with wide bandwidth, revealing 
more spectral information in the time-frequency image as a 
result [7]. The resulting time-frequency image is referred as a 
cochleagram and the resulting feature, which captures the 
statistical distribution, as the cochleagram image feature 
(CIF) [8].  

In this work, we propose the use of CIF of cough sounds 
for croup diagnosis. Further, we compare the outcomes with 
those from MFCC analysis, and a combined MFCC-CIF 
analysis. One of the main targets is to explore how well the 
human cochlea inspired CIF feature can perform. 

We also investigate two different classifier models: the 
logistic regression model (LRM) and a Support Vector 
Machine (SVM). The LRM, a well-known linear classifier, 
has been recently used in cough analysis [5, 6, 9]. We 
compare the results of LRM against those from support 
vector machines (SVMs), a nonlinear classifier widely used 
in speech recognition and sound event detection technology.  

II. FEATURE EXTRACTION 

This section describes the feature extraction methods for 
MFCC and CIF with reference to Fig. 1. 

A. MFCC 

Firstly, the cough signal is divided into frames and DFT 
is applied to the windowed frames as 
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Figure 1.  An overview of computing MFCC and CIF. 

 

where 𝑁 is the length of the window, 𝑥ሺ𝑛ሻ is the time 
domain signal, 𝑤ሺ𝑛ሻ is the window function, and 𝑋ሺ𝑘ሻ is the 
𝑘௧௛ harmonic corresponding to the frequency 𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄ , 
𝐹௦ is the sampling frequency. 

MFCCs utilize mel-filter banks, or triangular bandpass 
filters, which are equally spaced on the mel-scale [10]. The 
adjacent filters overlap such that the lower and upper ends of 
the 𝑚௧௛ filter are located at the center frequency of the 𝑚 െ 1 
and 𝑚 ൅ 1 filter, respectively. 

The MFCCs are obtained as the discrete cosine transform 
(DCT) of the log compressed filter bank energies given as 
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where 𝑖 ൌ 1, 2, … , 𝑙, 𝑙 is the order of the cepstrum, 𝐸ሺ𝑚ሻ is 
the filter bank energies of the 𝑚௧௛ filter, and 𝑀 is the total 
number of mel-filters. 

B. CIF 

In this time-frequency representation, the signal is 
broken into different frequencies which are naturally 
selected by the cochlea and hair cells. This frequency 
selectivity is modeled by the gammatone filter which is a 
series of bandpass filters with impulse response [11] 
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where 𝐴 is the amplitude, 𝑗 is the order of the filter, 𝐵 is the 
bandwidth of the filter, 𝑓௖ is the center frequency of the 
filter, 𝜙 is the phase, and 𝑡 is the time. 

The equivalent rectangular bandwidth (ERB) is used to 
describe the bandwidth of each cochlea filter in [11] given as 
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where 𝑄௘௔௥ is the asymptotic filter quality at high 
frequencies and 𝐵௠௜௡ is the minimum bandwidth for low 
frequency channels. The bandwidth of a filter can then be 
approximated as 𝐵 ൌ 1.019 ൈ 𝑓௖,ாோ஻. For this work, we only 
consider Greenwood’s ERB model [12] which was shown to 
give the best classification performance in [8]. 

The human cochlea has thousands of hair cells which 
resonate at  their  characteristic  frequency  and  at  a  certain 

 

Figure 2.  (a), (b): Time domain waveforms of a normal and a croupy 
cough (c), (d): their spectrograms and (e), (f): corresponding cochleagram. 
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bandwidth. The mapping between filter index and center 
frequency is determined as [13] 
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where 𝑔 ൌ 1,2, … , 𝐺, 𝐺 is the number of gammatone filters, 
𝑓௛ is the maximum frequency in the filter bank, and 𝑠 is the 
step factor given as 
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where 𝑓௟ is the minimum frequency in the filter bank. 

Similar to [8] we use a 4th order gammatone filter with 
four filter stages and each stage a 2nd order digital filter as 
given in [13]. The gammatone filter was implemented using 
the Auditory Toolbox for Matlab [14]. 

A representation similar to the conventional spectrogram 
image is obtained by smoothing the time series associated 
with each frequency channel in the gammatone filter and 
then adding the energy in the windowed signal for each 
frequency component. The log of the intensity values are 
then scaled in the range [0 1] for feature extraction. The time 
domain signal, spectrogram, and cochleagram of a normal 
and croup cough sound signal are given in Fig. 2. The 
dominant frequency component, centered around 400 Hz, is 
suppressed in the spectrogram image but revealed more 
succinctly in the cochleagram courtesy of more frequency 
components in the lower frequency range with narrower 
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bandwidth. The frequency range in both the representations 
is 0 to 22,050 Hz, which is the Nyquist frequency. 

III. CLASSIFICATION 

A.  LRM 

LRM is a regression model where the dependent variable 
is categorical, the probability of which is estimated using one 
or more independent variables or features. The dependent 
variable in this work are croup ሺ𝑌 ൌ 1ሻ and non-croup ሺ𝑌 ൌ
0ሻ. For a given feature vector 𝐅 ൌ ൣ𝑓ଵ 𝑓ଶ … 𝑓௙൧, the 
probability that the output is croup ሺ𝑌 ൌ 1ሻ can be estimated 
using the logistic function given as 
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and 𝛽଴, 𝛽ଵ, … , 𝛽௙ are the regression coefficients. A cough was 
determined to be croup if its probability was ≥ 0.5. 

B.  SVM 

SVM determines the optimal hyperplane to maximize the 
distance between any two given classes. Consider a set of 𝑙 
training samples belonging to two classes as 
ሼሺ𝐱ଵ, 𝑦ଵሻ, … , ሺ𝐱௟, 𝑦௟ሻሽ, where 𝐱௜ ∈ 𝑅ௗ is a 𝑑-dimensional 
feature vector representing the 𝑖௧௛ training sample, and 𝑦௜ ∈
ሼെ1, ൅1ሽ is the class label of 𝐱௜. The optimal hyperplane can 
be determined by minimizing ½‖𝐰‖ଶ subject to 𝑦௜ሺ𝐰 ∙ 𝐱௜ ൅
𝑏ሻ ൒ 1, where 𝐰 ∈ 𝑅ௗ is a normal vector to the hyperplane 
and 𝑏 is a constant. The optimization is solved under the 
given constraints by the saddle point of the Lagrange 
functional.  

For linearly nonseparable problems, the optimization can 
be generalized by introducing the concept of soft margin 
[15]. Nonlinear SVM is used in this work which maps the 
input vector 𝐱 to a higher dimensional space 𝐳 through some 
nonlinear mapping 𝜙ሺ𝐱ሻ chosen a priori to construct an 
optimal hyperplane. The kernel trick [16] is applied to create 
the nonlinear classifier where the dot product is replaced by 
a nonlinear kernel function 𝐾൫𝐱௜, 𝐱௝൯ which computes the 
inner product of the vectors 𝜙ሺ𝐱௜ሻ and 𝜙൫𝐱௝൯. A commonly 
used kernel function is Gaussian radial basis function (RBF), 

𝐾൫𝐱௜, 𝐱௝൯ ൌ exp ቀെฮ𝐱௜ െ 𝐱௝ฮ
ଶ

/2𝜎ଶቁ, where 𝜎 ൐ 0 is the 

width of the Gaussian function. 

The classifier for a given kernel function with the 
optimal separating hyperplane is then given as 
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with 𝛼௜ being the Lagrange multipliers. 

C. Patient Classification 

After completing cough classification for each patient, the 
a patient is diagnosed as having croup if one or more coughs 
are classified as croup, that is, 


1,    1

0,    0D
Q

P
Q


  

 

where 𝑄 is the total number of coughs classified as croup for 
a patient. 

IV. EXPERIMENTAL EVALUATION 

A description of the cough sound database used in this 
work is given first followed by an overview of the 
experimental setup. Finally, the results using MFCC, CIF, 
and feature vector combination are presented with LRM and 
SVM classification methods.  

A. Cough Sound Database 

The cough sounds were recorded using a smartphone 
(iPhone) at the Princess Margaret Hospital (PMH) and 
Joondalup Health Campus (JHC) in Western Australia. The 
recordings were made in realistic environments. This means 
the recordings have normal background noise such as people 
talking, children noise/crying, medical instrument sounds, 
footsteps, door opening/closing, etc. All signals in the 
database have a sampling frequency of 44,100 Hz. 

The cough sound database has a total of 364 pediatric 
patients belonging to two classes: croup (43 patients) and 
non-croup (321 patients). Multiple cough sound signals were 
manually segmented for each patient, up to 10 coughs per 
patient. The class croup has patients with croup only and 
croup plus upper respiratory tract infection (URTI). The non-
croup class includes URTI, wheeze (asthma, bronchiolitis, 
and viral induced), and pneumonia (atypical, bacterial, and 
viral). All the respiratory tract infections have been clinically 
diagnosed by clinicians at PMH and JHC using Australian 
clinical guidelines.  

B. Experimental Setup 

For all experiments, signal processing is carried out using 
a Hamming window of 1024 points (23.22 ms) with 50% 
overlap between frames. The classification performance is 
measured using Sensitivity, Specificity, Accuracy, Positive 
Predictive Value (PPV), Negative Predictive Value (NPV), 
and Cohen’s Kappa (κ). Except κ, all these values are 
reported in percentage (%). 

All results are reported using leave-one-out-test. That is, 
all cough sound signals from a single patient are used for 
testing and all cough sound signals from all other patients are 
used for training the classifier, making the trained model 
independent of the test patient. This process is repeated for all 
patients resulting in the number of trained models equal to 
the number patients. 

For MFCCs, experimentation was performed with 
different number of mel-filters in the range of 10-50. The 
best results were obtained at 𝑀 ൌ 18. As such, the feature 
vector for each frame is 54 dimensional which includes 18 
cepstral coefficients plus the first and second derivatives [17]. 
The final feature vector is a concatenation of the mean and 
standard deviation values from each dimension resulting in a 
108 dimensional final feature vector. 

For the cochleagram image, to get the same image 
resolution along the frequency axis as the spectrogram image,  
 



 

 
 

TABLE I.  PATIENT CLASSIFICATION RESULTS USING LRM 

 Sens Spec Acc PPV NPV κ 

MFCC  83.72 82.55 82.69 39.13 97.43 0.44 

CIF 93.02 84.11 85.16 43.96 98.90 0.52 

MFCC + CIF 88.37 75.70 77.20 32.76 97.98 0.37 

TABLE II.  PATIENT CLASSIFICATION RESULTS USING SVM 

 Sens Spec Acc PPV NPV κ 

MFCC  81.40 91.59 90.38 56.45 97.35 0.61 

CIF 86.05 91.28 90.66 56.92 97.99 0.63 

MFCC + CIF 88.37 91.59 91.21 58.46 98.33 0.65 

 

that is 𝑁 2⁄ , the number of gammatone filters, 𝐺, is set to 
512. The cochleagram image is divided into blocks and 
second and third central moments are extracted as features in 
each block. These values are concatenated to form the final 
feature vector. Various block sizes were experimented with 
and the best results obtained at a block size of 8 ൈ 4, along 
the vertical and horizontal, respectively.  This results in a 64 
dimensional final feature vector. For all features, each 
dimension is scaled in the range [0 1] for classification using 
LRM and SVM. 

B. Experimental Results 

The results for MFCC, CIF, and a combination of the two 
features using LRM and SVM classification methods are 
given in Table I and Table II, respectively.  

For LRM classification, with MFCC, a sensitivity and 
specificity of 83.72% and 82.55% are achieved, respectively. 
This increases to 93.02% and 84.11% with CIF. While only a 
marginal improvement is observed in the specificity value 
from MFCC to CIF, the sensitivity value is almost 10% 
more. However, no improvement was observed when the two 
features are combined. This suggests that raw feature 
combination using LRM is not suitable, at least for the 
features considered here. 

For SVM classification, with MFCC, the sensitivity 
decreases by 2.32% to 81.40% while the specificity increases 
by 9.04% to 91.59% when compared to LRM. Similarly, for 
CIF, the sensitivity decreases by 6.97% and specificity 
increases by 7.17% and for the combined feature vector, the 
sensitivity remains same at 88.37% but the specificity 
increases by 15.89% to 91.59%, which gives the best overall 
performance. 

It should be noted here that a grid search was used in 
tuning the SVM RBF kernel parameters after which the best 
combination of sensitivity and specificity values were 
chosen. This means that while a greater sensitivity might 
have been possible, the specificity value would have been 
much lower. In any case, on average, the classification 
performance of the SVM classifier is seen to be better than 
the LRM classifier, particularly with raw feature vector 
combination. 

V. CONCLUSION AND FUTURE WORK 

A method for diagnosing croup in children using 
automatic cough sound recognition has been presented in 

this paper. The proposed feature for use in this work, the 
CIF, utilizes a gammatone filter which models the frequency 
selectivity property of the human cochlea. The combination 
of CIF with MFCC was shown to give the best overall 
performance using SVM classification. 

It should be noted that augmenting the MFCC features 
with other features and clinical symptoms we could increase 
the diagnostic accuracy [18]. In future, we will be attempting 
the same approach on the features and the classifier proposed 
in this paper. 
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