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Abstract 

Support vector machines (SVMs) have seen an increased usage in applications of acoustic 
event classification since its rise to popularity about two decades ago. However, in recent 
years, deep learning methods, such as deep neural networks (DNNs), have shown to 
outperform a number of classification methods in various pattern recognition problems. This 
work starts by comparing the classification performance of DNNs against SVMs with a 
number of feature representations which fall into two categories: cepstral features and time-
frequency image features. Unlike related work, the classification performance of the two 
classifiers is also compared with feature vector combination and the training and evaluation 
times of the classifiers and features are also compared. The performance is evaluated on an 
audio surveillance database containing 10 sound classes, each class having multiple 
subclasses, with the addition of noise at various signal-to-noise ratios (SNRs). The 
experimental results shows that DNNs have a better overall classification performance than 
SVMs with both individual and combined features and the classification accuracy with DNNs 
is particularly better at low SNRs. The evaluation time of the DNN classifier was also 
determined to be the fastest but with a slow training time. 

Keywords: Sound event recognition, time-frequency image feature, deep neural networks, 
support vector machines 

1.0 Introduction 

Advancements in machine learning algorithms can significantly improve the classification 
performance in pattern recognition problems. As mentioned in [11], one such advancement 
for automatic speech recognition (ASR) applications was the introduction of expectation 
maximization (EM) algorithm [4] for representing the relationship between the hidden 
Markov model (HMM) states and the acoustic input using Gaussian mixture model (GMM). 
Such techniques have also been employed in sound event recognition (SER) applications as 
in [6]. Another such advancement was with support vector machines (SVMs) with the 
introduction of soft margin [3] for non-separable datasets and the kernel trick [2] for non-
linear datasets.  

While artificial neural networks (ANNs) trained using back propagating error derivatives also 
had the potential to learn more accurate models, limitations in hardware and learning 
algorithms for training neural networks with many hidden layers and large amounts of data 
restricted progress along these lines. However, this changed over the last few years with 
advancements in computer hardware and machine learning algorithms giving rise to a 
modified machine learning algorithm called deep neural networks (DNNs). DNNs have found 
usage in a number of applications such as speech recognition [30], classification of 
electrocardiogram (ECG) signals [23], and in face completion and reconstruction [34]. As 
summarized in [11], DNN has been shown to outperform GMM for acoustic modeling in 
ASR on many different datasets by a number of research groups. 

Furthermore, in two recent works in acoustics event classification [7, 15], DNN was shown to 
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perform better than other classifiers. However, these works only compare the classification 
performance and with mel-frequency cepstral coefficients (MFCCs) only. In another recent 
work in SER [18], the classification performance of SVM and DNN classifiers are compared 
with a number of features. These include MFCCs, features extracted from a stabilized 
auditory image (SAI) [38], and the spectrogram image feature (SIF) [6] where central 
moment values are extracted as features from the spectrogram image of sound signals. The 
overall classification performance of the DNN classifier was determined to be better than 
SVM with greater noise robustness. 

This work is a continuation of our earlier work in [28] where we used SVM classification and 
considered a number of cepstral and time-frequency image features in trying to achieve 
robust sound classification in the presence of environmental noise in an audio surveillance 
application. In this work, we propose the use of DNNs for robust sound classification on the 
same database. The approach taken in this work is similar to [18], that is, the classification 
performance of the DNN classifier is compared against the results using SVM at various 
signal-to-noise ratios (SNRs) with a number of individual features, outlined in [28]. SVMs 
have been shown to perform on par, and in some literature, even better than some more 
traditional classification methods. For example, SVMs outperformed GMM in audio 
classification in [17] and HMM in [22]. More such comparisons, justifying the use of SVMs 
as the baseline classifier in this work, can be found in [29]. 

In addition, we compare: the classification performance of the two classifiers with feature 
vector combination, the training and evaluation time of the two classifiers, and the training 
and evaluation time of the various individual features and feature vector combinations. As 
such, in comparison to [7, 15, 18], this paper evaluates DNN performance with a range of 
cepstral and time-frequency image features, feature combinations, and also compares the 
training and evaluation times of classifiers and features, which, to the best of our knowledge, 
hasn’t been done before for the application considered here. 

The rest of this paper is organized as follows. Section 2 summarizes related work and section 
3 gives an overview of the DNN classifier. The experimental setup, experimental results, and 
related discussions are given in section 4 and conclusion and recommendations are given in 
section 5. 

2.0 Previous Works 

For evaluating the performance of the classifiers, this work considers the same features as in 
[28] which can be broadly categorized as cepstral features and time-frequency image 
features. The cepstral features considered are MFCCs and gammatone cepstral coefficients 
(GTCCs). MFCCs for the 𝑡௧௛ frame are obtained as the discrete cosine transform (DCT) of 
the compressed filter bank energies given as 
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which is evaluated from 𝑞 ൌ 1, 2, … , 𝑄, where 𝑄 is the order of the cepstrum, 𝐸ሺ𝑚, 𝑡ሻ 
represents the filter bank energy of the 𝑚௧௛ filter, and 𝑀ଵ is the total number of mel-filters. 

GTCCs are computed similar to MFCCs but utilize a gammatone filter bank instead of the 
triangular mel filter bank. The gammatone filter models the frequency selectivity property of 
the human cochlea and a commonly used cochlea model is that proposed by Patterson et. al. 
[21] which is a series of bandpass filters where the bandwidth is given by equivalent 
rectangular bandwidth (ERB). The three commonly used ERB filter models are given by 
Glasberg and Moore [8], Lyon’s cochlea model as given in [31], and Greenwood [9]. An 
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efficient implementation of the gammatone filter bank provided in [32] has been utilized. 

While conventional cepstral coefficients apply log compression to the filter bank energies 
before computing the DCT, linear cepstral coefficients, without any compression, were 
determined to be more noise robust and have a better overall classification performance for 
both MFCCs and GTCCs in [28]. Results using both log and linear compression will be 
presented here. 

The use of time-frequency image derived features for sound classification has been seen in a 
number of literature [6, 14, 18, 28]. In [28], two types of time-frequency images were 
considered for feature extraction: spectrogram image and cochleagram image. The 
spectrogram derived features considered were: SIF, reduced spectrogram image feature 
(RSIF) [26], and the spectrogram image texture feature (SITF) [27]. With the SIF, the 
spectrogram image for each sound signal is divided into blocks, second and third central 
moments are computed in each block and concatenated to form the final feature vector. The 
𝑣௧௛ central moment for any given block of image is determined as 
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where 𝑆 is the sample size or the number of pixels in the block, 𝐼௦ is the intensity value of the 
𝑠௧௛ sample in the block, and 𝜇 is the mean intensity value of the block. 

The RSIF is computed similar to SIF but has reduced feature dimensions, utilizing the mean 
and standard deviation values along the rows and columns of the blocks.  

In addition, the SITF utilizes the image texture analysis technique of gray-level co-
occurrence matrix (GLCM) [10], applied to the spectrogram image. GLCM is a matrix of 
frequencies where each element ൫𝑎௫, 𝑎௬൯ is the number of times intensity value 𝑎௬ is located 
at a certain distance and angle, given by the displacement vector ሾ𝑑௞ 𝑑௧ሿ, where 𝑑௞ is the 
offset in the 𝑦 direction and 𝑑௧ is the offset in the 𝑥 direction, from intensity value 𝑎௫ in an 
𝑁௧ ൈ 𝑁௞ image 𝐼. Mathematically, this can be given as 
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where the size of the output matrix is 𝑁௚ ൈ 𝑁௚, 𝑁௚ is the number of quantized gray levels. 

GLCM analysis is performed in subbands and the matrix values from each subband are 
concatenated to form the final feature vector for the SITF. 

These same features were also extracted from the cochleagram image and now the SIF, RSIF, 
and SITF were referred as CIF, RCIF, and CITF, respectively. The cochleagram is a variation 
of the spectrogram image utilizing a gammatone filter. Cochleagram image derived features 
were determined to give a better overall classification performance in [28] and also much 
more noise robust, therefore, only cochleagram image derived features are considered in this 
work. 

SVMs are used for classification in [28] and it is used as a baseline classifier in this work. 
SVM determines the optimal hyperplane to maximize the distance between any two given 
classes. The initial SVM was a linear classifier [35] which was later extended to nonlinear 
datasets [2]. Consider a set of 𝑙 training samples belonging to two classes given as 
ሼሺ𝐱ଵ, 𝑦ଵሻ, … , ሺ𝐱௟, 𝑦௟ሻሽ, where 𝐱௜ ∈ 𝑅ௗ is a 𝑑-dimensional feature vector representing the 𝑖௧௛ 
training sample, and 𝑦௜ ∈ ሼെ1, ൅1ሽ is the class label of 𝐱௜. The optimal hyperplane can be 
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determined by minimizing ½‖𝐰‖ଶ subject to 𝑦௜ሺ𝐰 ∙ 𝐱௜ ൅ 𝑏ሻ ൒ 1, where 𝐰 ∈ 𝑅ௗ is a normal 
vector to the hyperplane and 𝑏 is a constant. The optimization is solved under the given 
constraints by the saddle point of the Lagrange functional.  

For linearly nonseparable problems, the optimization can be generalized by introducing the 
concept of soft margin [3]. Introducing non-negative slack variables 𝜉௜ which measure the 
degree of misclassification of data 𝐱௜ and a penalty function ∑ 𝜉௜௜ , the optimization is a trade-
off between a large margin and a small error penalty.  

In applications where linear SVM does not give satisfactory results, nonlinear SVM is 
suggested which aims to map the input vector 𝐱 to a higher dimensional space 𝐳 through 
some nonlinear mapping 𝜙ሺ𝐱ሻ chosen a priori to construct an optimal hyperplane. The kernel 
trick [2] is applied to create the nonlinear classifier where the dot product is replaced by a 
nonlinear kernel function 𝐾൫𝐱௜, 𝐱௝൯ which computes the inner product of the vectors 𝜙ሺ𝐱௜ሻ 
and 𝜙൫𝐱௝൯. A commonly used kernel function is Gaussian radial basis function (RBF), 

𝐾൫𝐱௜, 𝐱௝൯ ൌ exp ቀെฮ𝐱௜ െ 𝐱௝ฮ
ଶ

/2𝜎ଶቁ, where 𝜎 ൐ 0 is the width of the Gaussian function. 

The classifier for a given kernel function with the optimal separating hyperplane is then given 
as 
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with 𝛼௜ being the Lagrange multipliers. 

In [26], the performance of four commonly used multiclass SVM classification methods were 
compared and the classification performance of the one-against-all (OAA) multiclass 
classification method was generally found to be the best. As such, only the OAA multiclass 
classification method is considered in this work. OAA is probably the earliest of the 
multiclass SVM classification techniques [36]. For a 𝑃-class problem, 𝑃 binary SVM 
classifiers are constructed and evaluated where the 𝑖௧௛ classifier is trained with all the training 
samples from the 𝑖௧௛ class as positive labels and all the remaining samples as negatives 
labels. During classification, a sample 𝐱 is classified in the class with the largest value of the 
decision function which can be given as 
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3.0 Deep Neural Networks 

The methods for DNNs are now available in a number of literature, such as [11, 18, 20], and 
is summarized here. A DNN, as defined in [11], is a feed-forward ANN with more than one 
layer of hidden units between the inputs and outputs. The training data in a DNN can be 
modeled using a two-layer network known as a restricted Boltzmann machine (RBM). RBMs 
were invented by Smolensky in 1986 [33] but only gained attention in early 2000s after 
development of fast learning algorithms by Hinton [12]. A RBM is a generative energy based 
model that consists of a layer of stochastic binary visible units with undirected connections to 
a layer of binary hidden units but no visible-visible or hidden-hidden connections. 

The DNN classifier [20] has 𝐿-layers with the feature vectors on the input layer and the 
output layer in a one-of-𝑃 configuration. The DNN is constructed using individual pre-trained 
RBM pairs with each pair comprising 𝑉 visible and 𝐻 hidden stochastic nodes, 𝐯 ൌ
ሾ𝑣ଵ, 𝑣ଶ, … , 𝑣௏ሿ் and 𝐡 ൌ ሾℎଵ, ℎଶ, … , ℎுሿ். This work uses Bernoulli-Bernoulli RBM 
(BBRBM) structures, however, the input layer can also be formed using Gaussian-Bernoulli 
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RBM (GBRBM) structures as in [18]. Assuming binary nodes for the BBRBM structure, that 
is, 𝐯௕௕ ∈ ሼ0,1ሽ௏ and 𝐡௕௕ ∈ ሼ0,1ሽு, the energy function of the state 𝐸௕௕ሺ𝐯, 𝐡ሻ can be given as 
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where 𝑤௝௜ is the weight between the 𝑖௧௛ visible unit and the 𝑗௧௛ hidden unit and 𝑏௜
௩ and 𝑏௝

௛ are 

the real valued biases, respectively. The BBRBM model parameters are 𝜃௕௕ ൌ ൛𝐖, 𝐛𝐡, 𝐛𝐯ൟ 

where the weight matrix is given as 𝐖 ൌ ൛𝑤௜௝ൟ
௏ൈு

 with biases 𝐛𝒉 ൌ ൣ𝑏ଵ
௛, 𝑏ଶ

௛, … , 𝑏ு
௛൧

்
 and 

𝐛𝒗 ൌ ሾ𝑏ଵ
௩, 𝑏ଶ

௩, … , 𝑏௏
௩ሿ். 

The joint probability associated with configuration ሺ𝐯, 𝐡ሻ can then be given as 
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where Y is a partition function given as 𝑌 ൌ ∑ ∑ 𝑒ሼିாሺ𝐯,𝐡;ఏሻሽ
௛௩ . 

During pre-training, the training data is used to estimate the RBM model parameter θ with 
maximum likelihood learning using the contrastive divergence (CD) algorithm [13]. CD 
gives a simple approximation of the gradient of the log probability of the training data. A 
better generative model is learned through a limited number of steps of alternating Gibbs 
sampling by updating the hidden nodes 𝐡 given the visible nodes 𝐯 and then using the 
updated 𝐡 to update 𝐯. The training starts at the input layer, which is fed with the feature 
vectors, and form the visible nodes. The hidden units determined after the training process 
form the visible units for training the next RBM visible units. Multiple layers of RBMs are 
trained by repeating this process as many times as desired and, in the end, the RBMs are 
stacked to form a DNN as a single, multilayer generative model. 

In fine-tuning, a softmax output labeling layer of size 𝑃 is added which aims to convert a 
number of units in the final layer into a multinomial distribution using the softmax function 
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where 𝑟 is an index over all classes, 𝜃௅ are the model parameters for the DNN, 𝜙ሺ𝑟, 𝜃௅ሻ ൌ
𝑒൛∑ ௪ೖ೔௛೔ା௕ೝ

ಹ
೔సభ ൟ, and 𝑝ሺ𝑟|𝐡; 𝜃௅ሻ is the probability of the input being classified into class 𝑟. 

Back propagation derivatives of a cost function, which measures the discrepancy between the 
predicted outputs and the actual outputs 𝑐 for each training case [25], can then be used to 
discriminatively train the DNN. With the softmax output function, the cross entropy is the 
natural choice of cost function 𝐶 between the desired and actual distributions given as 

 
1

log | ; .
P

r L
r

C c p r 


  h   (9) 

More on the setting for the various DNN parameters and the DNN structure for the various 
features considered in this work can be found in the experimental setup, section 4.1.  

4.0 Experimental Evaluation 

An overview of the experimental setup is given first followed by the classification 
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performance using individual features and then feature combination. Finally, the training and 
evaluation time of the classifiers and features are compared.  

4.1 Experimental Setup 

The sound database has a total of 1143 files belonging to 10 classes: alarms, children voices, 
construction, dog barking, footsteps, glass breaking, gunshots, horn, machines, and phone 
rings. Each sound class contains multiple subclasses with interclass similarity and intraclass 
diversity as demonstrated in [26]. The sound files are largely obtained from the Real World 
Computing Partnership (RWCP) Sound Scene database in Real Acoustic Environment [19] 
and the BBC Sound Effects library. All signals in the database have 16-bit resolution and a 
sampling frequency of 44100 Hz. More details about the sound database and its comparison 
with that used in other similar work can be found in [26]. 

The classification performance is evaluated under three different noise environments taken 
from the NOISEX-92 database [37]: speech babble, factory floor 1, and destroyer control 
room. The performance is evaluated in clean conditions and at 20dB, 10dB, 5dB, and 0dB 
SNRs. Illustrations of cochleagram image of a sample sound signal, mapped to the HSV color 
space for better visualization, under clean conditions and with the addition of noise at 0dB 
SNR can be seen in Fig. 1. 

 

(a) 

 

(b) 

Figure 1: Cochleagram images for a sample sound signal from construction sound class. (a) 
Cochleagram image under clean conditions and (b) cochleagram image at 0dB SNR with 

factory noise [28]. 

 

For all experiments, signal processing is carried out using a Hamming window of 512 points 
(11.61 ms) with 50% overlap. For features utilizing the gammatone filter, only results using 
the best performing ERB model, as determined in [28], are reported. The classification 
accuracy is given in percentage as number of correctly classified test samples divided by the 
total number of test samples. Nonlinear SVM with a Gaussian RBF kernel is used in all cases 
as it was found to give the best results. The classifier parameters were tuned using cross 
validation. In tuning the parameters, one set of parameters which gave the best average 
classification accuracy were selected rather than determining the optimal parameters for each 
noise condition. For all experimentations, the classifier is trained with two-third of the clean 
samples with the remaining one-third of the samples used for testing under clean and noisy 
conditions. 
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For the DNN classifier, the number of hidden layers and their dimensions were determined 
through experimentation in each case, following a similar procedure to [18]. That is, a step-
wise search of hidden layer widths between 10 and 400 was performed. The resolution in 
each case was set to 10 and the internal layers were constrained to equal size. Similar to [18], 
results are presented using only two hidden layers for all the features since the addition of 
more hidden layers was only seen to give a marginal improvement in classification 
performance but with significant increase in computation time. The final DNN structures for 
all features are given in Table I where the input and output layers are equal to the feature 
dimension and number of classes, respectively. In addition, for all experiments, the batch 
training size was set to 127, one-sixth of the number of training samples, and using 1000 
training epochs. 

 

Table I: Final DNN structures for all features 

Feature 
DNN Structure 

Input 
Layer

Internal 
Layer 1

Internal 
Layer 2

Output 
Layer

MFCCs and GTCCs 72 50 50 10 

SIF and CIF 162 60 60 10 

RSIF and RCIF 72 50 50 10 

SITF and CITF 256 60 60 10 

Linear GTCC + CIF 234 160 160 10 

Linear GTCC + RCIF 144 100 100 10 

Linear GTCC + CITF 328 160 160 10 

 

4.2 Results Using Individual Features 

The classification performance of the SVM and DNN classifiers is compared using various 
individual features in this subsection which are grouped into cepstral features and time-
frequency image features. 

4.2.1 Cepstral Features 

The classification accuracy values for MFCCs and GTCCs, for both log and linear 
compression, using SVM and DNN classification methods are given in Table II. The results 
were obtained using the optimal parameter settings for MFCCs and GTCCs as reported in 
[28]. For both the features, the feature vector for each frame in the sound signal is 36 
dimensional which includes the first 12 cepstral coefficients and the first and second 
derivatives. The final feature vector is 72 dimensional, a concatenation of the mean and 
standard deviation values from each dimension. 

 

Table II: Classification accuracy values for MFCCs and GTCCs using SVMs and DNNs 

Feature 
SVM DNN 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

Log MFCC 97.11 92.21 73.32 60.54 47.77 74.19 96.85 90.03 81.36 66.05 50.48 76.96 

Log GTCC 96.33 94.58 77.78 70.43 55.03 78.83 96.85 95.19 81.98 68.24 57.04 79.86 

Linear MFCC 96.06 93.70 84.25 74.98 60.72 81.94 95.28 95.10 88.19 78.65 65.18 84.48 

Linear GTCC 96.85 93.96 87.75 80.93 61.77 84.25 95.80 95.63 88.80 81.80 66.49 85.70 

 

For both log and linear cepstrums, the average classification accuracy values for GTCCs are 
higher than MFCCs using both the classification methods. Also, the best average 
classification accuracy for both features is achieved using linear compression. As far as the 
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performance of the two classifiers is concerned, DNN is seen to give the highest average 
classification accuracy in all cases. The improvement in average classification accuracy is 
2.77%, 1.03%, 2.54%, and 1.45% for log MFCCs, log GTCCs, linear MFCCs, and linear 
GTCCs, respectively. As such, the most improved overall results are with log MFCCs but 
linear GTCCs are the best performing cepstral feature. In general, there isn’t a significant 
change in the classification accuracy under clean conditions and at 20dB SNR. However, the 
classification accuracy values are generally significantly improved as the SNR decreases. For 
example, at 0dB SNR, the improvement is 2.71%, 2.01%, 4.46, and 4.72% for log MFCCs, 
log GTCCs, linear MFCCs, and linear GTCCs, respectively. 

4.2.2 Time-Frequency Image Features 

Next, the classification accuracy values for the time-frequency image features are presented 
using SVM and DNN classifiers. Only results using cochleagram image derived features are 
reported here since it has been determined to be more effective than spectrogram image 
derived features in [28]. The classification accuracy values for the three cochleagram image 
features, CIF, RCIF, and CITF, using SVM and DNN classifiers are given in Table III. For 
CIF and RCIF, the cochleagram image is divided into 9 ൈ 9 blocks and second and third 
central moments are computed in each block. For CIF, these values are concatenated to form 
a 162 dimensional final feature vector for each sound signal. For RCIF, the mean and 
standard deviation of the two central moment values along the rows and columns of the 
blocks are concatenated to form a 72 dimensional final feature vector. For the CITF, the 
GLCM image texture analysis technique is applied to the cochleagram images. GLCM 
analysis is carried out in subbands, with 64 determined to be the optimum number of 
subbands, at an angle of 45° with 𝑁௚ ൌ 2 and 𝑑 ൌ 1, as determined to give the optimal 
results in [27]. The final feature vector dimension for the CITF is, therefore, equal to 256 
(𝑁௚

ଶ ൈ 64, where 64 refers to the number of subbands). 

 

Table III: Classification accuracy values for CIF, RCIF, and CITF using SVM and DNN 

Feature 
SVM DNN 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

CIF 93.18 93.09 92.21 89.06 63.95 86.30 94.75 94.66 93.79 90.55 70.87 88.92 

RCIF 94.75 94.75 94.58 91.69 69.38 89.03 96.06 95.54 95.19 92.39 72.70 90.38 

CITF 92.65 92.65 92.21 90.38 78.30 89.24 95.80 95.63 95.45 95.19 88.54 94.12 

 

For all three cochleagram image derived features, the average classification accuracy value 
using the DNN classifier are determined to be higher than the SVM classifier, as with cepstral 
features. The improvement in the average classification accuracy value over SVM is 2.62%, 
1.35%, and 4.88% for CIF, RCIF, and CITF, respectively. While there is improvement in 
classification performance for all three features using DNN classification, the improvement in 
classification performance is seen to increase with the feature vector dimension. This 
suggests that while the DNN classifier always gives a better overall classification 
performance than the SVM classifier, the DNN classifier is much more suitable with higher 
feature dimensions compared to the SVM classifier. 

The CITF produces the highest average classification accuracy using both classifiers and also 
the most improved classification performance from SVM to DNN classification. Unlike 
cepstral features, the classification accuracy under each noise condition has improved using 
DNN classification for all three cochleagram features. For the CITF, the improvement in 
classification accuracy is 3.15%, 2.98%, 3.24%, 4.81%, and 10.24% under clean conditions 
and at 20dB, 10dB, 5dB, and 0dB SNRs, respectively. As such, in general, the improvement 
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in classification performance increases as the SNR decreases. 

4.3 Results Using Feature Combination 

This section compares the classification performance of SVM and DNN classifiers using a 
combination of cepstral and time-frequency image features. For the cepstral features, only 
linear GTCCs are considered here being the best performing cepstral feature. The 
classification accuracy values using a combination of linear GTCCs and cochleagram image 
derived features are given in Table IV using SVM and DNN classification methods.  

 

Table IV: Classification accuracy values for linear GTCCs in combination with cochleagram 
image derived features using SVM and DNN 

Linear GTCCs 
+ 

SVM DNN 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

CIF 96.06 95.98 95.28 93.35 76.99 91.53 97.38 97.38 96.59 95.28 85.39 94.40 

RCIF 97.64 97.38 96.59 91.51 79.79 92.58 98.16 98.16 97.81 95.71 87.23 95.42 

CITF 96.59 96.59 95.36 94.23 83.73 93.30 97.90 97.81 97.64 95.71 91.25 96.06 

 

With both SVM and DNN classification methods, the average classification accuracy values 
for all cochleagram image derived features show improvement when combined with linear 
GTCCs. Compared to the average classification accuracy of CIF, RCIF, and CITF, when 
combined with linear GTCCs, the improvement is 5.23%, 3.55%, and 4.06%, respectively, 
for SVM classification. Similarly, with DNN classification, the improvement is 5.48%, 
4.62%, and 1.94% when compared to the results for CIF, RCIF, and CITF, respectively. 

Using both classification methods, the feature combination of linear GTCCs and CITF gives 
the highest average classification accuracy. Also, once again, the average classification 
values using DNN classification are higher than SVM classification for all feature 
combinations with an improvement in classification accuracy under all noise conditions. For 
the best performing feature set of linear GTCCs + CITF, the improvement in classification 
accuracy is 1.31%, 1.22%, 2.28%, 1.48%, and 7.52% under clean conditions and at 20dB, 
10dB, 5dB, and 0dB SNRs, respectively. As such, the improvement in classification 
performance from SVM to DNN is marginal and much more even when compared to the best 
performing individual features except at 0dB SNR where there is a significant improvement 
in classification accuracy. 

4.4 Further Analysis 

4.4.1 Classification Performance Comparison with [18] 

For various individual and combined features, the DNN classifier has been seen to 
outperform the SVM classifier in terms of overall classification performance and noise 
robustness. The classification accuracy results for the individual cepstral and time-frequency 
image features also have some similarity to the results in [18]. For example, in [18], for 
MFCCs, the improvement in classification performance from SVM to DNN is -9.0%, 20.7%, 
22.9%, and 8.5% under clean conditions and at 20dB, 10dB, and 0dB SNRs, respectively, 
with an improvement of 10.8% in the average classification performance. In our work, for 
linear GTCCs, the best performing cepstral feature, the improvement in classification 
accuracy over the baseline classifier is -1.05%, 1.67%, 1.05%, 0.87%%, 4.72% under clean 
conditions and at 20dB, 10dB, 5dB, and 0dB SNRs, respectively, with an improvement of 
1.45% in the average classification accuracy. While our work does not achieve as much 
improvement in classification performance as in [18], it should be noted that the evaluation 
task in [18] was identical to [5] and the results for MFCC-SVM were taken from [5]. It is 
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understood that linear SVM is used in [5] using the OAO multiclass classification method. In 
our earlier work in [26], the classification performance using nonlinear SVM and OAA 
multiclass classification method were determined to be better than linear SVM and OAO 
multiclass classification method, respectively, which could explain the lesser improvements 
in classification performance in our work than in [18]. 

One possible explanation for the slight decline in the classification performance from SVM to 
DNN for cepstral features under clean conditions could lie with the approach taken in tuning 
the classifier parameters. One set of classifier parameters were determined through 
experimentation which produced the best average classification accuracy across all noise 
conditions. It is more than likely that better classification accuracy will be obtained under 
each noise condition if optimal classifier parameters were determined and utilized under each 
noise condition. However, this would be an unrealistic implementation since, in practice, the 
classifier would need to determine the noise level before deciding the classifier parameters to 
use. This is something that the developed system is currently not equipped with and, 
therefore, one set of classifier parameter settings is seen as the way forward for now. Besides, 
cepstral features are not the primary feature considered in this work so this wasn’t 
investigated further. 

For the SAI features, the improvement in classification performance from SVM to DNN in 
[18] is 1.87%, 1.80%, 8.07%, 9.40% under clean conditions and at 20dB, 10dB, and 0dB 
SNRs, respectively, with an improvement of 5.28% in the average classification performance. 
For the CITF, the best performing time-frequency image feature in our work, the 
improvement in classification performance is 3.15%, 2.98%, 3.24%, 4.81%, and 10.24% 
under clean conditions and at 20dB, 10dB, 5dB, and 0dB SNRs, respectively, with an 
improvement of 4.88% in the average classification performance. As such, the improvement 
in the classification performance for the CITF compares favorably with the SAI features in 
[18]. However, results for feature vector combination and the training and evaluation times 
have not been reported in [18]. 

The training and evaluation time of the classifiers and features considered in this work are 
compared next. 

4.4.2 Training and Evaluation Time of the Classifiers 

The training and evaluation time of the SVM and DNN classifiers are given in Table V for 
the best performing feature set of linear GTCC + CITF. All training and evaluation times 
were measured using Intel Core i7–3632QM CPU. The training time of the DNN classifier is 
considerably higher than the SVM classifier, about 200 times more, which can be a 
disadvantage if performing unsupervised training. However, the evaluation time of the DNN 
classifier is determined to be significantly faster, about 596 times faster than the SVM 
classifier. Also, the DNN classifier always produced the highest overall classification 
performance and also the most noise robust. Therefore, if using supervised training, as in this 
work, the DNN classifier can be considered the best choice due to its superior classification 
performance and faster evaluation time. Besides, techniques such as the use of GPUs over 
CPUs have been proposed for faster training time for DNNs [1, 24]. Also, accelerated 
decision making in SER using parallel processing techniques, implemented on a 
supercomputing cluster, has been proposed in [16]. 
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Table V: Training and evaluation time of the SVM and DNN classifiers for the best 
performing combined feature vector (linear GTCC + CITF) 

Classification 
Method 

Training Time 
(s) 

Testing Time  
(s) 

SVM 
DNN 

0.4512 
89.8556 

33.7504 
0.0566 

 

4.4.3 Training and Evaluation Time of Features with DNN 

Finally, the training and evaluation time of the different features are computed. These are 
plotted in Fig. 2 for DNN classification. The training and evaluation time in this instance are 
largely affected by two variables, the feature vector dimension and the internal layer 
dimensions of the DNN classifier, both of which are given in Table 1. For example, all 
cepstral features and the RCIF have the same feature dimension of 72 and DNN internal layer 
dimensions of 50. As such, the training and evaluation time of these features are 
approximately same. In general, a good correlation is observed between the training and 
evaluation times. 

	
Figure 2: Training and evaluation time of various features and feature combinations with the 

DNN classifier 

As far as the individual features are concerned, the cepstral features and the RCIF have the 
fastest training and evaluation times of about 26s and 12.5ms, respectively. With a training 
time of more than 40s and an evaluation time of approximately 20ms, the CITF, the best 
performing cochleagram feature, has the highest training and evaluation time of all the 
individual features. As such, the RCIF probably offers the best compromise between 
classification accuracy and the training and evaluation times. 

The feature combination of linear GTCC with CIF and CITF coupled with 160 dimensional 
internal layers results in the highest training and evaluation times. However, due to relatively 
lower feature and layer dimensions, the training and evaluation time of linear GTCC + RCIF 
is relatively low, both at about half of linear GTCC + CITF. In addition, the average 
classification accuracy using this combination was determined to be 95.42%, only 0.64% 
lower than the feature combination of linear GTCC + CITF which gives the highest average 
classification performance. As such, the feature combination of linear GTCC + RCIF is a 
good alternative if lower computational costs are a priority. 
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5.0 Conclusion 

This work proposes the use of DNNs over SVMs for robust sound classification in an audio 
surveillance application. When experimented with various individual features, the DNN 
classifier produced a better overall classification performance and was also seen to be more 
noise robust. With cepstral features, there wasn’t any significant change in classification 
accuracy from SVM to DNN classification under clean conditions and at 20dB SNR. 
However, in general, marginal to significant increase in classification accuracy was observed 
at 10dB, 5dB, and 0dB SNRs. Only cochleagram based sound signal time-frequency 
representation was considered for feature extraction in this work and, with DNN 
classification, all cochleagram image derived features saw improvement in classification 
accuracy under all noise conditions with the most improved results at 0dB SNR. 

The cochleagram image derived features were seen to be more noise robust than the cepstral 
features and with a better overall classification performance. The classification performance 
of the cochleagram image derived features was further improved with feature combination 
with linear GTCCs, the best performing cepstral feature. With feature combination, the 
classification performance of the DNN classifier was once again better than the SVM 
classifier. While the classification accuracy improved under all noise conditions, once again 
the most improved results were at 0dB SNR.  

The DNN classifier was also seen to have a significantly faster evaluation time than the SVM 
classifier but the training time was observed to be significantly slower. As such, the only 
disadvantage of the DNN classifier over the SVM classifier was determined to be the slower 
training time. As future work, GPU could be used instead of CPU in a bid to reduce the 
training time. Also, feature vector dimension is one of the parameters affecting the training 
time and feature vector optimization could be considered for this purpose. 
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