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Abstract 

This work proposes the use of pseudo-color cochleagram image of sound signals for feature 
extraction for robust acoustic event recognition. A cochleagram is a variation of the 
spectrogram. It utilizes a gammatone filter and has been shown to better reveal spectral 
information. We propose mapping of the grayscale cochleagram image to higher dimensional 
color space for improved characterization from environmental noise. The resulting time-
frequency representation is referred as pseudo-color cochleagram image and the resulting 
feature, which captures the statistical distribution, as pseudo-color cochleagram image feature 
(PC-CIF). In addition, sequential backward feature selection is applied for selecting the most 
useful feature dimensions, thereby reducing the feature dimension and improving the 
classification performance. We evaluate the effectiveness of the proposed methods using two 
classifiers, k-nearest neighbor and support vector machines. The performance is evaluated on 
a dataset containing 50 sound classes, taken from the Real World Computing Partnership 
Sound Scene Database in Real Acoustical Environments, with the addition of environmental 
noise at various signal-to-noise ratios. The experimental results show that the proposed 
techniques give significant improvement in classification performance over baseline methods. 
The most improved results were observed at low signal-to-noise ratios. 

Keywords: Acoustic event recognition, cochleagram, pseudo-color, sequential backward 
feature selection, support vector machines, time-frequency image 

1.0 Introduction 

Research in acoustic event recognition (AER), also referred as sound event recognition 
(SER), and its many applications has received a lot of attention in recent years. Some of these 
applications are audio surveillance [1], hearing improvement devices [2], and urban sound 
classification [3]. A key challenge in this field has been achieving robust AER, that is, 
improving the sound recognition rate in the presence of noise. The proposed techniques 
mostly revolve around finding robust features and/or classifiers. For example, use of wavelet 
features and one-class support vector machines (1-SVM) are proposed for robust audio 
surveillance in [1]. The use of time-frequency image derived features have been proposed in 
[4] and matching pursuit [5] for environmental sound recognition in [6]. More recently, deep 
learning methods have been applied for the same purpose as seen in [7]. 

The use of time-frequency image derived features, in particular, has been shown to be 
effective in achieving robust AER [4, 8, 9]. Every sound signal produces a unique texture 
which can be visualized using a time-frequency image. The addition of noise affects certain 
frequency bands and features which can accurately capture the non-noise manipulated 
frequency bands can help in differentiating sounds. 

In [4], the sound signal spectrograms are divided into blocks and second and third central 
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moments are extracted as features in each block, referred as the spectrogram image feature 
(SIF). While extracting features from the grayscale spectrogram is a common technique, in 
[4], the grayscale spectrogram image is also quantized and mapped to a higher dimensional 
color map. The classification performance using features extracted from this pseudo-color 
quantized spectrograms were shown to be significantly more robust than the SIF and mel-
frequency cepstral coefficients (MFCC), a commonly used feature in audio classification 
applications.  

Spectrograms, however, have a disadvantage. The frequency components are equally 
distributed and have constant bandwidth in this conventional time-frequency distribution. 
Most sound signals generally have dominant frequency components in the lower frequency 
range and less frequency components in the upper frequency range. As such, the spectral 
information is not best revealed in this time-frequency representation. 

In [10], the use cochleagrams are proposed over spectrograms for sound classification in an 
audio surveillance application. Cochleagrams utilize a gammatone filter which models the 
frequency selectivity property of the human cochlea. The resulting time-frequency image 
offers more frequency components in the lower frequency range with narrow bandwidth and 
less frequency components in the upper frequency range with wide bandwidth, thereby 
revealing more spectral information than the spectrogram image. The corresponding feature, 
referred as the cochleagram image feature (CIF), was shown to significantly outperform the 
SIF. 

In this work, we extend the color mapping technique proposed for spectrograms in [4] to 
cochleagrams. That is, we propose the use of pseudo-color quantized cochleagrams for 
feature extraction over grayscale cochleagrams used in [10]. We follow the same feature 
extraction technique and refer this as the pseudo-color cochleagram image feature (PC-CIF).  

The use of robust features and classifiers has been applied successfully in other similar 
applications, automatic speech recognition (ASR), in particular. However, not all feature 
dimensions are useful. Surprisingly, very little attention has been given to dimensionality 
reduction in AER applications. Most of the current feature extraction and classification 
methods employed in AER are inspired from ASR where feature dimension reduction has 
received significant attention. 

The benefits of feature dimension reduction are manifold. Firstly, not all feature dimensions 
are relevant or useful and removing these often leads to improved classification performance. 
Secondly, feature dimension is one of the factors that affects computation time. A reduced 
feature dimension often leads to reduced computational costs. In addition, a reduced feature 
dimension also requires less storage space. 

Feature dimension reduction techniques can be grouped into feature selection or feature 
extraction [11]. Feature selection algorithms can be put into three main categories [12]: 
wrappers, filters, and embedded. In the wrapper method, the aim is to search for a good 
subset of features using the feature subset selection algorithm where different combinations 
are evaluated based on the model accuracy using a predictive model [13]. Filter methods 
score each feature through application of some statistical measure. Features are then either 
selected or removed based on its score ranking. Embedded methods perform feature selection 
and classification simultaneously by using the learning algorithm to determine the most 
effective features during model creation. 

Wrapper methods are directed at improving the classification performance and, therefore, are 
quite popular in various applications. One commonly used wrapper method is sequential 
feature selection (SFS). Two commonly used SFS methods are sequential forward feature 
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selection (SFFS) and sequential backward feature selection (SBFS), also referred as forward 
selection and backward elimination, respectively. The SFFS/SBFS algorithms start with an 
empty/full feature set and add/remove features until the maximum objective function is 
achieved [14]. Some recent applications of SFS, sometimes with modifications, include gene 
selection [15], identifying fish vocalizations [16], face recognition [17], and emotion 
detection using speech [18]. 

In this paper, we study the usefulness of feature dimension reduction in AER. In applications 
such as gene expression data analysis, the feature vector dimension can be extremely large, 
multiple thousands of dimensions as seen in [19]. A key reason for feature dimension 
reduction in such work is to reduce the computational costs. However, the feature dimension 
in most AER applications, such as [4, 8] and in this work as well, is a few hundred at most. 
As such, the primary aim of feature dimension reduction in our work is to achieve 
improvement in classification performance through removal of irrelevant feature dimensions. 
Also, our primary focus is studying the effect of feature dimension reduction on the 
classification performance in the presence of noise, that is, the robustness in AER. As such, 
we consider sequential feature selection for this purpose.  

The classification performance of SFFS and SBFS has been compared in many works. In [20, 
21], SBFS is determined to be better than SFFS. However, the results in [22] show that SBFS 
does not always outperform SFFS, SBFS is seen to be more appropriate when the number of 
features is large enough in [23], and no one method is seen to dominate in [24]. In general, 
the performance of a feature selection algorithm could be affected by a number of factors 
such as number of features, number of observations, application, objective function, etc. In 
this work, we performed some preliminary experiments under the same conditions to 
compare the classification performance of SFFS and SBFS. On occasions, we found the 
SFFS method to converge early and the SBFS to be more consistent. To keep the paper 
concise, we report results using the SBFS method only and refer interested readers to [20-24]. 

We study the usefulness of SBFS on individual features, MFCC, CIF, and PC-CIF, and 
combined feature sets, MFCC+CIF and MFCC+PC-CIF. In all cases, we compare the 
classification performance of raw features and the effect of SBFS under clean conditions and 
in the presence of noise at various signal-to-noise ratios (SNRs). Similar to [25], the 
performance is evaluated using two classifiers: k-nearest neighbor (KNN) and support vector 
machines (SVM). KNN is probably the simplest of all classifiers which has shown to be 
useful with linear cepstral and linear time-frequency image features, which produced the best 
results in [25]. SVM is a relatively new classification method which has gained widespread 
attention in AER applications, such as [16, 26], and shown to be especially useful on small 
datasets. Literature review on SVM, the multiclass classification methods for this binary 
classifier, and a comparison on its classification performance can be found in [25]. In 
addition, to further study the effect of feature dimension reduction, we evaluate the training 
and testing time for the proposed features with the KNN and SVM classifiers with and 
without feature dimension reduction. 

The rest of this paper is organized as follows. Section 2 gives an overview of the baseline and 
proposed methods, which include grayscale cochleagram image color mapping and sequential 
backward feature selection methods. The experimental setup, experimental results, and 
related discussions are given in section 3 and conclusion and recommendations are given in 
section 4. 

2.0 Overview of Feature Extraction, Classification, and Selection 

2.1 Baseline Features 
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The baseline features for use in this work are linear MFCCs and CIF, the details for which 
can be found in [8]. While conventional cepstral coefficients apply log compression to the 
filter bank energies before computing DCT, linear cepstral coefficients, without any 
compression, were determined to be more noise robust and have a better overall classification 
performance for MFCCs in [8]. Therefore, only results using linear compression will be 
presented here. 

The use of time-frequency image derived features for sound classification has been seen in a 
number of literature [4, 7, 8]. In [8], two types of time-frequency images were considered for 
feature extraction: spectrogram and cochleagram. Cochleagram image derived features were 
determined to give a better overall classification performance and also much more noise 
robust, therefore, only cochleagram image derived features are considered in this work.  

The cochleagram image is divided into subbands and second and third central moments are 
extracted as features in each subband. The features from each subband are concatenated and 
the final feature vector referred as the cochleagram image feature (CIF). 

2.2 Pseudo-Color Quantized Cochleagram Image 

The procedure for pseudo-color quantization of the grayscale cochleagram images is same as 
for the grayscale spectrogram images in [4]. The grayscale cochleagram is quantized and then 
mapped onto the red, green, and blue (RGB) monochrome components. The mapping of the 
grayscale image to the monochrome image can be given as 

      1 2, , , ,...c c Nm k t f X k t c c c c  
 

 (1) 

where 𝑚௖ is a monochrome image (R, G, or B), f a nonlinear mapping function, c the 
quantization regions, and 𝑋ሺ𝑘, 𝑡ሻ is the 𝑘௧௛ harmonic in the 𝑡௧௛ frame. 

A colormap is essentially a color lookup table which in this work is used for mapping the 
grayscale intensity values. In this work we consider three commonly used colormaps: HSV, 
Jet, and Hot. The resulting pseudo-color mapped cochlegram images, with and without noise, 
and the corresponding colormaps for a sample sound signal are given in Figure 1. The 
construction sound signal used in this illustration is sanding of a piece of wood. For this 
illustration, the sound signal was divided into frames of size 1024 points with 50% overlap 
between frames. A total of 512 gammatone filters [8, 27] are used to reveal the frequency 
characteristics of the sound signal. 

The procedure for computing PC-CIF is similar to CIF except that computation is now 
performed in all three monochrome images and the features concatenated. The advantage of 
the grayscale cochleagram over the grayscale spectrogram is the better spectral energy 
distribution as documented in [8]. In addition, the usefulness of time-frequency image feature 
extraction in achieving robust AER has also been explained in [4, 8, 25]. Here, we focus on 
the usefulness of the nonlinear higher dimensional color mapping of the grayscale 
cochleagram which is illustrated using the corresponding spectral energy distribution in 
Figure 2 for the HSV color space.  

With the grayscale cochleagram, the first 200 frequency bins are significantly affected by 
noise. The noise has minimal or no effect from bin 250 onwards which could help in 
recognizing the sound signal. When mapped to the HSV colorspace, the noise affects bins up 
to about 300 for the Green color component. However, there is significantly less corruption 
for the Red and Blue color components. With the Blue color component, only two frequency 
bands are affected by noise with narrow bandwidth. The effect of noise on the Red 
component is between bins 1 and 200 but the noise effect is less than the grayscale image. As  
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Figure 1: Pseudo-color cochleagram illustrations for a construction (sanding a piece of wood) 

sound signal along with the HSV, Jet, and Hot colormaps. (a) HSV pseudo-color 
cochleagram under clean conditions, (b) Jet pseudo-color cochleagram under clean 

conditions, (c) Hot pseudo-color cochleagram under clean conditions, (d) HSV pseudo-color 
cochleagram at 0dB SNR, (e) Jet pseudo-color cochleagram at 0dB SNR, (f) Hot pseudo-

color cochleagram at 0dB SNR, (g) HSV colormap, (h) Jet colormap, and (i) Hot colormap. 

 

such, in this case, the Red and Blue component images should be more useful for feature 
extraction then the grayscale image. 

2.3 Sequential Backward Feature Selection 

The aim of SBFS is to select a subset of features that maximize an objective function [28], 
the classification accuracy in this case. That is, given a feature set 𝐹 ൌ ሼ𝑓௩|𝑣 ൌ 1,… , 𝐷ሽ, 
search for a subset 𝐹ௌ, with 𝑆 ൏ 𝐷, that maximizes an objective function 𝐽ሺ𝐹ሻ 

   1 2
,

, ,..., arg max | 1,..., .
S

S v v vS v
S v

F x x x J x v D     (2) 

The following steps are followed in sequential backward feature selection. 

Step 1: Use all the feature dimensions 𝑇௞ୀ଴ ൌ 𝐹, to calculate the average accuracy 𝐽ሺ𝑇଴ሻ 
using cross-validation, where 𝑇௞ and 𝐽 represent the feature set and average accuracy, 
respectively. 

Step 2: One feature dimension is removed at a time and the average accuracy is calculated 
with the remaining features. At the end of this step, the feature removal of feature dimension 
𝑓ି corresponding to the highest average accuracy, 
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Figure 2: (a) Grayscale cocheagram spectral energy distribution, (b) HSV pseudo-color 
cochleagram energy distribution for the Red component, (c) HSV pseudo-color cochleagram 
energy distribution for the Green component, and (d) HSV pseudo-color cochleagram energy 

distribution for the Blue component. 

 

 arg max ,
k

k
x T

f J T f


      (3) 

is permanently removed and the feature set is updated to  

1k kT T f 
     (4) 

Step 3: Repeat step 2 with the remaining features. This process continues until no further 
improvement can be achieved in the classification performance.  

Step 4: The SBFS process terminates when the classification accuracy plateaus and the 
remaining features are utilized in training and testing the final models. 

3.0 Experimental Evaluation 

An overview of the experimental setup is given first followed by the classification 
performance using the baseline features (MFCC, CIF, and MFCC+CIF), baseline features 
after SBFS, and then using the proposed features: PC-CIF and MFCC+PC-CIF. Finally, the 
training and testing time of the KNN and SVM classifiers before and after feature dimension 
reduction are compared. 

3.1 Experimental Setup 

The sound database has a total of 4000 files belonging to 50 classes, 80 files per class. The 
sound files are taken from the Real World Computing Partnership (RWCP) Sound Scene 
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Database (SSD) in Real Acoustical Environments [29] which has been used in other similar 
works such as [4, 7]. This is a large database and, therefore, the sound classes and files used 
in this work may or may not be similar to what is used in other works. Also, in [4, 7], the 
performance is evaluated under four noise levels but we use five noise levels. As such, direct 
comparison of results is difficult. All signals in the database have 16-bit resolution and a 
sampling frequency of 44100 Hz. 

The classification performance is evaluated under three different noise environments taken 
from the NOISEX-92 database [30]: speech babble, factory floor 1, and destroyer control 
room. The performance is evaluated in clean conditions and at 20dB, 10dB, 5dB, and 0dB 
SNRs. 

For all experiments, signal processing is carried out using a Hamming window of 1024 points 
(23.22 ms) with 50% overlap. For the CIF and PC-CIF, which utilize the gammatone filter, 
only results using the best performing ERB model [10] are reported. The classification 
accuracy is given in percentage as number of correctly classified test samples divided by the 
total number of test samples. For the KNN classifier, k values from 1 to 30 were 
experimented with for each feature set but only the best results are presented here. For the 
SVM classifier, nonlinear SVM with a Gaussian RBF kernel is used in all cases as it was 
found to give the best results. SVM parameters, the penalty parameter and the width of the 
Gaussian function [31], were tuned using Bayesian optimization [32]. In tuning the 
parameters, one set of parameters which gave the best average classification accuracy was 
selected. For all experimentations, the classifier is trained with 50 clean samples per class 
with the remaining 30 samples used for validating and testing the model under clean and 
noisy conditions. As such, a total of 2500 samples are used for training the classifiers and the 
remaining 1500 samples used for validating and testing the models. 

3.2 Results Using Baseline Features 

The classification accuracy values for MFCC, CIF, and MFCC+CIF with raw features using 
KNN and SVM classifiers are given in Table I. 

In computing MFCC, the number of mel-filters was varied in the range 10-60 to determine 
the optimal number of mel-filters for each classifier. The variation of the average 
classification accuracy for KNN and SVM classifiers against the number of mel-filters is 
shown in Figure 3. In general, the best average classification accuracy for both classifiers was 
achieved when the number of mel-filters was in the range 13-35. For KNN, the highest 
average classification accuracy was achieved at 𝑀 ൌ 22 and 𝑀 ൌ 20 for SVM. 

For MFCC, the feature vector for each frame in the sound signal is 3 ൈ𝑀 dimensional which 
includes the 𝑀 cepstral coefficients and the first and second derivatives. The final feature 
vector is a concatenation of the mean and standard deviation values for each dimension. As 
such, the final MFCC feature vector dimension is 2 ൈ 3 ൈ𝑀 resulting in 132 dimension 
feature vector for KNN and 120 dimension feature vector for SVM. 

For the CIF, various number of subbands were experimented with. The optimal number of 
subbands was chosen as 64 for both KNN and SVM classification methods as it was 
determined to give the best tradeoff between classification performance and feature 
dimension. The number of gammatone filters was set to 512 which means there are 8 
frequency bins per subband. The second and third central moments are computed in each 
subband and concatenated to form the final feature vector which is 128 dimensional. Finally, 
for MFCC+CIF, the feature vector is 260 dimensional for KNN classification and 248 
dimensional for SVM classification. 
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Figure 3: Variation in the average classification accuracy with increasing number of mel-
filters 

 

Table I: Classification accuracy values for MFCC, CIF, and MFCC+CIF using KNN and 
SVM classification with raw features 

Feature 
KNN SVM 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

MFCC 82.07 81.76 78.82 69.04 39.91 70.32 85.53 85.02 78.73 65.11 37.09 70.30 

CIF 85.20 84.40 81.53 73.73 53.40 75.65 91.13 90.18 85.16 75.49 52.49 78.89 

MFCC+CIF 86.33 85.69 83.02 76.58 53.80 77.08 92.33 92.07 88.42 79.69 53.89 81.28 

 

 

The average classification accuracy of the CIF is determined to be significantly better than 
MFCC with both KNN and SVM classification methods, +5.33% and +8.59%, respectively. 
The CIF is seen to outperform MFCC under all noise conditions with the most improved 
results at low SNR. At 0dB SNR, the improvement from MFCC to CIF is +13.49% and 
+15.40% with KNN and SVM classification methods, respectively. As such, it can be 
deduced that the CIF is significantly more noise robust than MFCC. 

Further improvement in the average classification performance is observed with the 
combined feature set, MFCC+CIF. The improvement in the average classification accuracy 
over CIF, the best performing individual feature, is +1.43% and +2.39% for KNN and SVM 
classification methods, respectively. The classification accuracy is seen to improve under all 
noise conditions with both the classifiers. 

In addition, in general, the average classification performance of the SVM classifier is seen to 
be marginally better than the SVM classifier. With MFCC, the average classification 
accuracy value using the KNN and SVM classifiers are almost same while the SVM classifier 
performs better with CIF and MFCC+CIF, +3.24% and +4.20%, respectively. The SVM 
classifier is particularly seen to perform well under clean and high SNR conditions. More 
such analysis on feature and classifier performance can be found in [8, 25]. 

3.3 Results for Baseline Features after SBFS 

The classification accuracy results after applying SBFS are given in Table II. The results with 
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KNN classification show that there is significant improvement in average classification 
accuracy for all three feature sets over the results using raw features. The improvement in 
average classification value over the corresponding raw feature results are 10.99%, 5.12%, 
and 6.55% for MFCC, CIF, and MFCC+CIF, respectively. The classification accuracy values 
are observed to improve under all noise conditions for all three feature sets but the most 
improved results are at low SNR. At an average classification accuracy of 83.63%, the 
combined feature set, MFCC+CIF, is once again seen to give the best classification 
performance. The improvement in classification accuracy for MFCC+CIF is 3.47%, 3.58%, 
4.22%, 6.53%, and 14.91% under clean conditions and at 20dB, 10dB, 5dB, and 0dB SNR, 
respectively. 

A similar trend can also be observed with SVM classification. The improvement in average 
classification accuracy over the raw features is 9.76%, 5.87%, and 6.21% for MFCC, CIF, 
and MFCC+CIF, respectively. The average classification accuracy improves under all noise 
conditions with the most improved results at low SNR. The combined feature set, 
MFCC+CIF, once again outperforms the individual features. The improvement in 
classification accuracy value for MFCC+CIF are 0.67%, 0.33%, 1.98%, 7.47%, and 20.60% 
under clean conditions and at 20dB, 10dB, 5dB, and 0dB SNR, respectively. 

In addition, the comparison of average classification accuracy values using KNN and SVM 
classification methods are observed to be similar to raw features. KNN performs slightly 
better, +1.25%, with MFCC while SVM performs marginally better, +3.99% and +3.86%, 
with CIF and MFCC+CIF, respectively. With MFCC, SVM is seen to perform slightly better 
under clean and high SNR conditions and KNN performing better at low SNR. For CIF and 
MFCC+CIF, however, the classification accuracy values using SVM classification are better 
than KNN classification under all noise conditions. 

 

Table II: Classification accuracy values for MFCC, CIF, and MFCC+CIF using KNN and 
SVM classification after SBFS 

Feature 
KNN SVM 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

MFCC 84.93 84.84 83.27 80.96 72.56 81.31 85.87 85.93 83.98 79.56 64.98 80.06 

CIF 88.13 87.16 85.18 80.29 63.09 80.77 91.80 90.98 88.62 83.93 68.44 84.76 

MFCC+CIF 89.80 89.27 87.24 83.11 68.71 83.63 93.00 92.40 90.40 87.16 74.49 87.49 

 

 

The SBFS algorithm is targeted at improving the classification performance. It continues to 
remove feature dimensions until no further improvement can be achieved in the classification 
performance. This explains the usefulness of the SBFS algorithm which also makes it an 
exhaustive and time consuming process, a disadvantage if the raw feature dimension is large. 

3.4 Results Using PC-CIF and SBFS 

With the PC-CIF the final feature vector is three times CIF, that is, 384 dimensional. The 
classification accuracy results using PC-CIF and MFCC+PC-CIF are given in Table III. The 
presented results are after applying SBFS since this has already shown to be significantly 
more robust than the raw features. While experimentation was performed using all three 
colormaps, only the best results are presented here. The best results were achieved using the 
HSV and Hot colormaps for KNN and SVM classification methods, respectively.  

For PC-CIF, an average classification accuracy of 84.96% and 88.80% are achieved using 
KNN and SVM classification methods, respectively. This is marginally better than the 
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average classification accuracy of 83.63% and 87.49% achieved using MFCC+CIF using 
KNN and SVM classification methods, respectively. As such, the PC-CIF on its own is able 
to match the classification performance of MFCC+CIF. In addition, it is significantly better 
than the average classification accuracy of 80.77% and 84.76% using CIF with KNN and 
SVM classifiers, respectively. 

With the combined feature vector, the improvement over PC-CIF is –0.92% and +1.32% 
using KNN and SVM classifiers, respectively. The performance of KNN classifier drops 
slightly with feature combination indicating its unsuitability with high dimensional feature 
combination. With an average classification accuracy of 90.12%, the feature vector of 
MFCC+PC-CIF and SVM classification produces the best classification performance. Also, 
MFCC+PC-CIF produces improvement in classification accuracy over PC-CIF under all 
noise conditions with SVM classification. 

 

Table III: Classification accuracy values for PC-CIF and MFCC+PC-CIF using KNN and 
SVM classification after SBFS 

Feature 
KNN SVM 

Clean 20dB 10dB 5dB 0dB Average Clean 20dB 10dB 5dB 0dB Average

PC-CIF 92.93 91.49 87.24 82.69 70.44 84.96 95.07 94.44 92.49 87.78 74.22 88.80 

MFCC+PC-CIF 91.73 90.27 86.04 81.91 70.27 84.04 95.33 94.78 93.38 89.76 77.33 90.12 

 

 

3.5 Training and Testing Times 

The normalized training and testing time of the KNN and SVM classifiers before and after 
feature dimension reduction using SBFS are shown in Figure 4. For KNN classifier, training 
and testing time reduce for all feature sets after applying SBFS. With the best performing 
feature set of MFCC+PC-CIF, the training and testing time are about 99% and 92% of the 
original training and testing time, respectively. A similar trend is also observed with SVM 
classification. For MFCC+PC-CIF, both the training and testing time are about 91% of the 
original training and testing time, respectively. 

While the feature dimension of MFCC is significantly less than PC-CIF and MFCC+PC-CIF, 
the training time is observed to be the highest using SVM classification both before and after 
feature dimension reduction. Also, the training time is observed to be slightly higher after 
feature dimension reduction. To further investigate the reason for this, an experiment was 
performed to measure the average number of optimization iterations and the average number 
of support vectors for the three feature sets. The results for this are shown in Figure 5. 

The average number of optimization iterations for MFCC is observed to be significantly 
higher than PC-CIF and MFCC+PC-CIF which could explain the increase in training time. 
Also, both the average number of optimization iterations and the average number of support 
vectors are observed to increase after feature dimension reduction thereby increasing the 
training time. 
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Figure 4: Comparison of training and testing time for raw features and after feature selection 
using KNN and SVM classification. (a) KNN training time, (b) KNN testing time, (c) SVM 

training time, and (d) SVM testing time. 

 

Figure 5: (a) Average number of optimization iterations and (b) average number of support 
vectors for the SVM classifier with raw features and after SBFS. 

 

4.0 Conclusion 

This work proposes the use of pseudo-color quantized cochleagram images for feature 
extraction and sequential backward feature selection for robust sound event recognition. The 
classification accuracy values using the proposed feature, PC-CIF, were seen to increase 
under both clean and noisy conditions with both KNN and SVM classification methods over 
the baseline features. Further improvement in classification performance was achieved with 
feature combination, MFCC+PC-CIF. The improvement in classification accuracy was seen 
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to increase from clean and high SNR conditions to low SNR conditions. As such, the most 
improved results were obtained at low SNR conditions. 

SBFS is, however, a greedy algorithm making it very time consuming, especially if the input 
or raw feature dimension is high. This wasn’t a significant disadvantage in this work since 
feature selection was supervised and the input feature vectors a few hundred at most. 
However, in future, effort to reduce this time will be considered. One way to achieve this 
would be using hybrid feature dimension reduction such as using PCA or another feature 
dimension reduction technique to select the subset of features from the original feature set 
and then applying SBFS to this subset features. It would also be important to test the 
performance of the developed models on an independent test dataset to ensure there is no 
feature selection bias and to get a true measure of the classification performance. At the 
moment feature selection is performed on the validation dataset with the assumption that any 
given test data would be statistically similar. 
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