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Abstract 

Objective: Spirometry is a commonly used method of measuring lung function. It is useful in the 
definitive diagnosis of diseases such as asthma and chronic obstructive pulmonary disease 
(COPD). However, spirometry requires cooperative patients, experienced staff, and repeated 
testing to ensure the consistency of measurements. There is discomfort associated with 
spirometry and some patients are not able to complete the test. In this paper, we investigate the 
possibility of using cough sound analysis for the prediction of spirometry measurements.  

Approach: Our approach is based on the premise that the mechanism of cough generation and 
the forced expiratory maneuver of spirometry share sufficient similarities enabling this 
prediction. Using an iPhone, we collected mostly voluntary cough sounds from 322 adults 
presenting to a respiratory function laboratory for pulmonary function testing. Subjects had the 
following diagnoses: obstructive, restrictive, or mixed pattern diseases, or were found to have no 
lung disease along with normal spirometry. The cough sounds were automatically segmented 
using the algorithm described in [1]. We then represented cough sounds with various cough 
sound descriptors and built linear and nonlinear regression models connecting them to 
spirometry parameters. Augmentation of cough features with subject demographic data is also 
experimented with. The dataset was divided into 272 training subjects and 50 test subjects for 
experimentation.   

Main Results: The performance of the auto-segmentation algorithm was evaluated on 49 
randomly selected subjects from the overall dataset with a sensitivity and PPV of 84.95% and 
98.51%, respectively. Our regression models achieved a root mean square error (and correlation 
coefficient) for standard spirometry parameters FEV1, FVC, and FEV1/FVC of 0.593L (0.810), 
0.725L (0.749), and 0.164 (0.547), respectively, on the test dataset. In addition, we could achieve 
sensitivity, specificity, and accuracy of 70% or higher by applying the GOLD standard for 
COPD diagnosis on the estimated spirometry test results. 

Significance: The experimental results show high positive correlation in predicting FEV1 and 
FVC and moderate positive correlation in predicting FEV1/FVC. The results show possibility of 
predicting spirometry results using cough sound analysis. 
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I. Introduction 

Globally, preventable chronic respiratory diseases affect hundreds of millions of people. In 2015, 
chronic obstructive pulmonary disease (COPD) was among the top four causes of death 
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worldwide (COPD and asthma accounted for approximately 6.3% of the deaths [2]). According 
to the Australian Bureau of Statistics, chronic lower respiratory diseases [3], which includes 
diseases such as COPD and asthma, were the fifth largest cause of death in Australia in 2015, 
accounting for about 5% of all deaths [4]. 

Early diagnosis of chronic respiratory diseases is important to reduce its severity and effects. The 
stepwise investigation into the diagnosis of chronic respiratory diseases proposed by the Global 
Alliance against Chronic Respiratory Diseases (GARD) includes lung function measurement [5]. 
Lung function tests (LFTs), also known as pulmonary function tests (PFTs), allow for a 
quantifiable assessment of pulmonary function without physical examination of the lungs. 
Spirometry, performed using a spirometer, is the most common form of LFT [6]. It is a powerful 
tool in the diagnosis and management of respiratory diseases [7] and referred as the gold 
standard in the diagnosis and assessment of COPD [5].  

Spirometry measures the volume and/or speed of air that can be inhaled and exhaled. During 
spirometry, a subject places their mouth around a mouthpiece of a spirometer and takes the 
deepest possible breath. A forced expiration is then performed with the target of expelling all the 
air as rapidly as physically possible [8]. It is essential that the patient fully engages with the 
process and exerts the maximum effort possible. The procedure is repeated until three consistent 
measurements are obtained. The spirometer measures the forced expiratory volume in the first 
second (FEV1) and the forced vital capacity (FVC) which represents the total volume of air 
exhaled from the lungs after the deepest possible inhalation.  

The spirometry results are often compared against the predicted or reference values [9]. The 
forced expiratory ratio, FEV1/FVC, and FVC help differentiate obstructive, restrictive, and 
normal breathing patterns [7]. Abnormal results could indicate obstructive respiratory conditions, 
such as asthma and COPD, and restrictive diseases, such as interstitial lung disease and obesity 
[7, 10, 11]. In addition, the severity of the obstructive disease can be determined using FEV1. 

Although spirometry is a non-invasive test, it requires significant patient cooperation and also 
physical contact. The latter requires contact via a mouthpiece into the spirometer and often also a 
nose clip in order to minimize air loss. The test requires subjects to understand and cooperate in 
exhaling as hard and fast as possible. The test may need to be repeated multiple times to ensure 
consistency in results [7, 8]. This can be inconvenient and difficult for some subjects such as the 
elderly or those with significant lung disease. Additionally, the cost of equipment and personnel 
time is significant. Also, more than 50% of people with chronic respiratory diseases live in low 
and middle income countries [5] where medical resources and expertise is scarce. This brings 
about the need for new techniques and readily available devices for performing such tests 
without the need for significant medical expertise. 

In comparison, the recording of cough sounds requires minimal patient cooperation (particularly 
spontaneous coughs; and voluntary coughs can usually be easily produced by adults) and 
requires no physical contact. Cough is a common symptom of various respiratory conditions. It is 
a natural reflex of the human body to clear the throat or airways of foreign particles or mucus. 

The phases of spirometry and cough physiology share some similarities. Cough physiology is 
comprised of three phases: inspiratory, compression, and expiratory [12]. During inspiration, an 
amount of air is inhaled which can be seen as similar to the first step of spirometry where the 
subject takes a deep breath. Compression is a brief period when the glottis closes, maintaining 
lung volume as intrathoracic pressure builds. In spirometry, this phase could be seen as similar to 
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the subject holding their breath before expiration. The expiratory phase of a cough starts with the 
rapid opening of the glottis. There is an initial supramaximal expiratory flow of air followed by a 
longer lasting lower expiratory flow [12-14]. This compares to the last step of spirometry where 
the subject expels the bulk of the air initially followed by reduced but prolonged expulsion. 

These similarities lead to the possibility that spirometry results can be estimated using cough 
sound analysis. In previous studies, cough sound signal classification has been shown to be 
useful in detecting respiratory diseases such as pneumonia [15], asthma [16], and croup [1]. In a 
recent work [17], cough sounds have been used to estimate spirometry readings for asthmatic 
and healthy subjects. The study reported root mean square error (RMSE) of 0.48L, 0.57L, and 
0.08 in estimating FEV1, FVC, and FEV1/FVC, respectively. The study dataset, however, was 
small with only 28 subjects: 16 healthy and 12 asthmatic. In addition, other obstructive, 
restrictive, and mixed diseases were not explored and the cough signals were manually 
segmented. 

In this study, we explore the use of cough sound signal analysis for estimating spirometry 
readings. Compared to [17], our technique utilizes various cough sound descriptors. In addition, 
our dataset is significantly larger, at a total of 322 subjects, and our methods are fully automated 
starting from cough episode extraction. Along with asthma and subjects with normal LFT, we 
also include subjects with COPD, restrictive, and mixed lung diseases. In addition, we employ 
sequential backward feature selection (SBFS) in an effort to improve the prediction. Our paper 
explores linear and nonlinear regression models. 

Moreover, age, height, gender, and ethnicity of the subject are the main determinants in the 
predicted/reference spirometry values [10, 18]. The weight of the subject may also be used in 
some reference equations [8]. The augmentation of cough features with subject demographic 
data has been shown to be useful in classifying respiratory diseases [19, 20]. In this work, we test 
the usefulness of subject demographic information in predicting the spirometry readings when 
augmented with the cough sound features. 

The rest of this paper is organized as follows. The data collection method is described in section 
II. Technical details of the proposed approach are presented in section III. The dataset and model 
development and testing are discussed in section IV and conclusions in section V. 

II. Data Collection 

The human ethics committees of The University of Queensland, Brisbane, Australia, and 
Joondalup Health Campus (JHC), Perth, Australia, approved the study protocols and patient 
recruitment procedure. The study population consists of subjects presenting with respiratory 
symptoms including cough, sputum production, wheeze, and shortness of breath and who were 
undergoing spirometry testing in a dedicated pulmonary function facility at JHC. 

The cough sounds were recorded within 15 minutes of performing the spirometry test. The 
recording was done using an Apple iPhone 6s and with help of an iOS application developed by 
ResApp Health limited. Sound data was recorded at a sampling rate of 44100 samples per second 
at a bit depth of 16 bits per sample. The smartphone recorder was placed approximately 20-50 
cm away from the mouth of the subject at an angle of approximately 45°. This helped in 
eliminating the effects of wind noise which arises when bulk air streams of a cough directly hit 
the microphone. 

Cough recordings were made by dedicated research nurses in the realistic environment of a 
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pulmonary function laboratory. Our protocols attempted to eliminate preventable interferences 
such as loud conversations, overlapping coughs, and coughs from parties other than the targeted 
subject. However, some of the recordings contained unavoidable interferences such as speech 
sounds and beeps and noises contributed by medical devices being used in the environment at the 
time of cough recording. 

III. Proposed Method 

The main steps in the proposed approach are shown in Fig. 1 [17]. The dataset is divided into 
training and test subjects. The regression model is trained and validated with features extracted 
from all coughs from all training subjects. The trained/validated model is then used to estimate 
the spirometry readings for all coughs for the test subject. The final estimation for each test 
subject is statistically determined from the predicted cough outputs. 

 

 

Fig. 1.  Procedure for testing the trained regression model. 

  

A. Features 

The cough sound signals are automatically segmented using the method described in [1, 21]. The 
segmented coughs are then divided into three equal parts and various features are extracted from 
each segment. These are 8bispectrum scores, 1non-Gaussianity score, 4formants (first 
four formants), 1log energy, 1Shannon’s entropy, 1zero-crossing rate, 1kurtosis, and 
31mel-frequency cepstral coefficients (MFCC). In addition, 13wavelet features are 
extracted from the cough signal. This gives a final cough feature dimension of 157. More details 
on the usefulness of these features in cough sound analysis and feature extraction can be found in 
[15, 19]. 

In the cough + demographic feature models, subject demographic data, age, gender, weight, and 
height, are also utilized. 

B. Regression 

In this work, we experiment with one linear and one non-linear regression method, linear 
regression [22] and support vector regression (SVR) [23], respectively. We use the least-squares 
fit for linear regression and nonlinear regression with Gaussian kernel for SVR. 

Regression is used to predict the output of each cough sound signal. We experiment with mean, 
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median, minimum, and maximum statistics to predict the final output for each test subject from 
the corresponding cough predicted values (see Fig. 1). 

C. Feature Selection 

The aim of sequential backward feature selection is to remove irrelevant feature dimensions and 
select a subset of features that minimize the RMSE. The following steps are followed in SBFS. 

Step 1: Use all the feature dimensions to calculate the baseline RMSE. 

Step 2: One feature dimension is removed at a time and the RMSE is calculated with the 
remaining features. At the end of this step, the feature removal corresponding to the lowest 
RMSE is permanently removed and the feature set is updated. 

Step 3: Repeat step 2 with the remaining features. This process continues until no further 
improvement can be achieved in the prediction performance. 

Step 4: The SBFS algorithm terminates when the prediction error plateaus and the remaining 
features are utilized in training and testing the final models. 

IV. Model Training and Evaluation 

In this section, we first give an overview of the dataset used in this study. We then discuss our 
algorithm development and validation procedures. This is followed by the results obtained 
during model training, validation, and testing.  

A. Database Overview 

Our database consists of cough sound recordings and detailed clinical diagnostic information on 
each subject including the final diagnosis, clinical examination findings, LFT outcomes, and 
subject demographic information.   

The cough sound database has a total of 322 adult subjects with obstructive, restrictive, and 
mixed (obstructive and restrictive) respiratory conditions and subjects with normal LFT results. 
It also includes some subjects with non-chronic respiratory diseases. These subjects were 
initially suspected of having chronic respiratory conditions and, therefore, were subjected to the 
spirometry procedure. The obstructive group has been divided into three subgroups for further 
analysis. These are COPD, asthma, and other obstructive diseases (diseases which could not be 
grouped into COPD and asthma such as COPD and asthma comorbids, bronchiectasis, 
emphysema, etc.). Each diagnosis was made by a specialist respiratory physician and confirmed 
using formal lung function tests.  

The dataset is divided into training and test sets of 272 subjects and 50 subjects, respectively. 
The regression model is trained and validated on the training dataset. The test dataset is 
completely independent of the training dataset and is used for testing only. The cough dataset has 
multiple cough sounds (mostly voluntary coughs) recorded for each subject. The cough sound 
signals are automatically segmented the procedure for which is described in [1, 21]. Breakdown 
of demographic and cough data for the training (and test) subjects are given in Table I. 

 
 
 
 



6 
 

Table I: Statistical overview of demographic and cough data for training (and test) subjects 

 
 

Number of 
Subjects 

Average 
Age 

(Years) 

Gender 
(M:F) 

Height  
(m) 

Weight 
(kg) 

Cough Data 
Smoking 
History 

(Yes:No) 

Total No. 
of 

Coughs 

Average 
No. of 

Coughs/ 
Subject

Obstructive 
(COPD) 

52 
(10) 

72 ± 9 
(69 ± 10) 

22:30 
(3:7)

1.65 ± 0.09 
(1.65 ± 0.13)

73.72 ± 15.92 
(67.32 ± 19.47)

479 
(95) 

9.21 
(9.50)

49:3 
(9:1)

Obstructive 
(Asthma) 

39 
(8) 

66 ± 16 
(68 ± 12) 

20:19 
(5:3)

1.69 ± 0.11 
(1.69 ± 0.09)

83.31 ± 18.61 
(84.89 ± 10.20)

383 
(80) 

9.82 
(10.00)

20:19 
(4:4)

Obstructive 
(Others) 

19 
(5) 

68 ± 16 
(62 ± 6) 

7:12 
(3:2)

1.65 ± 0.08 
(1.68 ± 0.09)

74.27 ± 15.29 
(87.00 ± 21.05)

189 
(50) 

9.95 
(10.00)

10:9 
(4:1)

Restrictive 
42 

(11) 
68 ± 15 

(63 ± 20) 
26:16 
(10:1)

1.67 ± 0.10 
(1.74 ± 0.07)

85.33 ± 19.58 
(92.94 ± 16.46)

412 
(94) 

9.81 
(8.55)

25:17 
(8:3)

Mixed Pattern 
6 

(0) 
62 ± 17 

(-) 
4:2 
(-)

1.63 ± 0.14 
(-)

101.58 ± 24.22 
(-)

65 
(-) 

10.83 
(-)

4:2 
(-)

LFT Normal 
83 

(16) 
63 ± 15 

(59 ± 14) 
31:52 
(8:8)

1.67 ± 0.10 
(1.69 ± 0.08)

80.29 ± 17.83 
(83.91 ± 17.82)

824 
(128) 

9.93 
(8.00)

43:40 
(7:9)

Others 
31 
(0) 

67 ± 11 
(-) 

16:15 
(-)

1.68 ± 0.11 
(-)

80.85 ± 14.44 
(-)

313 
(-) 

10.10 
(-)

21:10 
(-)

Overall 
272 
(50) 

67 ± 14 
(64 ± 14) 

126:146 
(29:21) 

1.67 ± 0.10 
(1.69 ± 0.09) 

80.36 ± 18.06 
(83.04 ± 18.65) 

2665 
(447) 

9.80 
(8.94) 

172:100 
(32:18) 

  

B. Experimental Setup 

Algorithm development and evaluation was carried out as described in Section III.  

Background noise and unavoidable interferences were part of the natural environment in which 
the recordings were made. We applied a 4th order Butterworth bandpass filter, lower cutoff 
frequency of 70Hz and upper cutoff frequency of 20kHz, to the cough sound signals to filter out 
low frequency noise. In addition, we use all available coughs to predict the final spirometry 
reading for a subject. This minimizes the effect that coughs corrupted with noise might have on 
the final estimated value. 

We used the leave-one-subject-out validation technique to train and validate our models. That is, 
all cough sound signals from a single subject are used for testing and all cough sound signals 
from all other subjects are used for training the regression model, making the trained model 
independent of the test subject. This process is repeated for all subjects resulting in the number 
of trained models equal to the number of subjects. Leave-one-subject-out validation is performed 
on the training dataset only. The model is then retrained using all the training observations and 
with the optimal settings determined during validation for testing on the independent test dataset. 

Using the laboratory spirometry measurements as reference, we evaluate the prediction 
performance of the models using the RMSE and the standard deviation of the RMSE, as defined 
in [17]. For SVR, all results are reported using nonlinear SVM with a Gaussian kernel. SVM 
parameters, the penalty parameter and the width of the Gaussian function [24], were tuned using 
Bayesian optimization [25]. The aim in parameter tuning was to minimize the RMSE of leave-
one-subject-out validation. 
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C. Performance of the Automatic Segmentation Algorithm 

The automatic segmentation algorithm and its training and validation procedures have been 
described in [1, 21] and is summarized here. The auto segmentation algorithm utilizes Time-
Delay Deep Neural Network (TD-DNN) with autoencoders in the hidden layers [26, 27]. The 37-
dimensional input feature vector for the auto segmentation algorithm includes cepstral, entropy, 
and temporal features. Using variance hypothesis test, a total of 25 features were determined to 
be useful in representing cough sounds for segmentation. The algorithm was trained and 
validated on a dataset which is totally independent of the dataset used in this work. The 
training/validation dataset had a total of 153 subjects with a sensitivity and positive predictive 
value (PPV) of 89.79% and 80.55% in leave-one-out cross-validation [1].  

We tested the performance of the auto segmentation algorithm on a subset of the dataset used in 
this work. Cough sound signals were manually segmented so that the start and end points can be 
compared as per the procedure described in [21]. Manual segmentation is a time consuming 
process, therefore, coughs from only 49 randomly selected subjects was used for this purpose. 
The cough sounds for these subjects were then segmented using the automatic segmentation 
algorithm. A sensitivity and PPV of 84.95% and 98.51% was achieved with the manually 
segmented coughs as reference. 

D. Results Using Linear Regression 

1) Results Using Cough Feature Model 

The RMSE in predicting FEV1, FVC, and FEV1/FVC using cough only features are given in 
Table II. The results are before and after feature selection and the mean, median, minimum, and 
maximum statistical measures are used in predicting the final spirometry readings. 

The RMSE for FEV1, FVC, and FEV1/FVC using mean measure are 0.739L, 0.895L, and 0.150, 
respectively. This improves to 0.688L, 0.832L, and 0.138 after feature selection. Feature 
selection is seen to improve the prediction error for all models. With the mean measure, the 
improvement in the RMSE after feature selection is 0.051L, 0.063L, and 0.012 for FEV1, FVC, 
and FEV1/FVC, respectively. Feature selection is also seen to reduce the standard deviation of 
the RMSE by 0.075L, 0.090L, and 0.004 for FEV1, FVC, and FEV1/FVC, respectively. 

The mean and median statistical measures are seen to give the best prediction performance for 
the cough only model. In general, only a marginal difference is observed between the prediction 
errors for the median and mean measures. Unlike the median measure which picks one value 
from set of predicted outcomes, the mean has the advantage of using all the values in the 
computation of the final prediction. Therefore, from now on we use the mean measure for final 
spirometry reading prediction. 
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Table II: RMSE ± standard deviation of the RMSE for predicting FEV1, FVC, and FEV1/FVC 
on the training/validation dataset. The model utilizes cough features and linear regression. 

 Before Feature Selection After Feature Selection 

Final 
Prediction 

Method 

FEV1 
(L) 

FVC 
(L) 

FEV1/FVC 
FEV1 

(L) 
FVC 
(L) 

FEV1/FVC 

Mean 0.739 ± 0.814 0.895 ± 1.092 0.150 ± 0.031 0.688 ± 0.739 0.832 ± 1.002 0.138 ± 0.027

Median 0.744 ± 0.830 0.890 ± 1.102 0.150 ± 0.032 0.684 ± 0.734 0.825 ± 0.974 0.137 ± 0.026 

Min 0.979 ± 2.053 1.132 ± 1.896 0.179 ± 0.064 0.810 ± 1.133 0.986 ± 1.553 0.152 ± 0.029

Max 1.186 ± 5.949 1.415 ± 9.438 0.179 ± 0.051 0.829 ± 0.745 0.996 ± 1.202 0.152 ± 0.035

  

2) Results Using Cough + Demographic Feature Model 

The RMSE using cough + demographic feature model are presented in Table III. The 
demographic data includes age, gender, weight, and height of the subject. The results are once 
again presented before and after feature selection. The RMSE for the cough + demographic 
feature model shows significant improvement when compared to the corresponding results for 
the cough feature model. For the before feature selection models, the improvement in the RMSE 
for FEV1, FVC and FEV1/FVC are 0.173L, 0.220L, and 0.005, respectively. A similar 
observation is also made for the cough + demographic feature model and cough feature model 
after feature selection. The improvement in RMSE for FEV1, FVC, and FEV1/FVC are 0.164L, 
0.210L, and 0.005, respectively.  

There is also significant reduction in the standard deviation of the RMSE with the introduction of 
the demographic features. The reduction in the standard deviation for FEV1, FVC, and 
FEV1/FVC for the before feature selection models are 0.316L, 0.164L, and 0.001, respectively. 
For the two after feature selection models, the reduction in the standard deviation for FEV1, 
FVC, and FEV1/FVC are 0.306L, 0.225L, and 0.001, respectively. Therefore, the augmentation 
of demographic information to the cough sound descriptors has shown to be useful in estimating 
the spirometry readings.  

In addition, feature selection has once again shown to be useful in reducing the RMSE. For the 
cough + demographic feature model, the RMSE (and standard deviation of the RMSE) is seen to 
improve by 0.042L (0.065L), 0.053L (0.151L), and 0.012 (0.004) for FEV1, FVC, and 
FEV1/FVC, respectively. 

 

Table III: RMSE ± standard deviation of the RMSE for predicting FEV1, FVC, and FEV1/FVC 
on the training/validation dataset. The model utilizes cough + demographic features and linear 

regression. 

Feature Set 
FEV1 

(L) 
FVC 
(L) 

FEV1/FVC 

Before Feature 
Selection 

0.566 ± 0.498 0.675 ± 0.928 0.145 ± 0.030 

After Feature 
Selection 

0.524 ± 0.433 0.622 ± 0.777 0.133 ± 0.026 
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3) Test Results 

The test results using linear regression are given in Table IV. Only the cough + demographic 
feature models were used here since it has shown to be more accurate in estimating the 
spirometry readings on the training/validation dataset. Interestingly, the RMSE for FEV1 and 
FVC using the before feature selection model are better than the after feature selection model. In 
addition only a marginal improvement is seen in the RMSE for FEV1/FVC in the after feature 
selection model. This suggests that while feature selection could be used to improve the 
estimation performance on the validation dataset, the performance does not necessarily translate 
to the test dataset. 

In general, it could be said that the before feature selection model gives the best estimation. The 
RMSE is estimating FEV1, FVC, and FEV1/FVC using this model are 0.630L, 0.750L, and 
0.157, respectively. 

 

Table IV: RMSE ± standard deviation of the RMSE for predicting FEV1, FVC, and FEV1/FVC 
on the test dataset. The model utilizes cough + demographic features and linear regression. 

Feature Set 
FEV1 

(L) 
FVC 
(L) 

FEV1/FVC 

Before Feature 
Selection Model 

0.630 ± 0.535 0.750 ± 0.678 0.157 ± 0.034 

After Feature 
Selection Model 

0.631 ± 0.503 0.770 ± 0.715 0.155 ± 0.033 

 
 
E. Results Using Support Vector Regression 

We now present results using support vector regression. Since the test results using linear 
regression don’t show any significant benefit of feature selection, in this instance we present 
results without feature selection. 

1) Validation Results 

The RMSE in predicting FEV1, FVC, and FEV1/FVC using cough feature model and cough + 
demographic feature model are given in Table V. The results use the mean statistical measure for 
final prediction. The results using SVR generally show improvement over the corresponding 
validation results using linear regression. The improvement in the cough feature model is 
0.020L, 0.025L, and 0.006 for FEV1, FVC, and FEV1/FVC, respectively. Similarly, the 
improvement in the cough + demographic feature model is 0.016L, 0.016L, and -0.005, for 
FEV1, FVC, and FEV1/FVC, respectively. 

Similar to linear regression, the RMSE for SVR shows improvement with the inclusion of 
demographic data. The improvement in the RMSE from the cough feature model to the cough + 
demographic feature model is 0.169L, 0.211L, and 0.006, respectively. 
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Table V: RMSE ± standard deviation of the RMSE for predicting FEV1, FVC, and FEV1/FVC 
on the training/validation dataset. The model utilizes cough features and cough + demographic 

features with support vector regression but without feature selection. 

Model 
FEV1 

(L) 
FVC 
(L) 

FEV1/FVC 

Cough Feature Model 0.719 ± 0.746 0.870 ± 1.080 0.144 ± 0.029 

Cough + Demographic 
Feature Model 

0.550 ± 0.552 0.659 ± 1.011 0.138 ± 0.030 

  

2) Test Results 

The test results using the cough + demographic feature model for SVR are given in Table VI. In 
this instance, we present the overall RMSE and the RMSE for the individual disease groups. The 
overall RMSE for FEV1 and FVC show improvement over the corresponding results using linear 
regression. The RMSE for FEV1/FVC is, however, slightly degraded. As far as the RMSE for 
the individual disease groups is concerned, FEV1 and FEV1/FVC are best estimated for 
restrictive diseases and FVC best estimated for asthma. 

 

Table VI: RMSE ± standard deviation of the RMSE for predicting FEV1, FVC, and FEV1/FVC 
on the test dataset. The model utilizes cough + demographic features and support vector 

regression without feature selection. 

Disease 
FEV1 

(L) 
FVC 
(L) 

FEV1/FVC 

Obstructive (COPD) 0.904 ± 0.985 0.872 ± 0.781 0.280 ± 0.053 

Obstructive (Asthma) 0.452 ± 0.189 0.573 ± 0.497 0.211 ± 0.037 

Obstructive (Others) 0.522 ± 0.241 0.696 ± 0.453 0.082 ± 0.005 

Restrictive 0.442 ± 0.184 0.722 ± 0.344 0.061 ± 0.004 

LFT Normal 0.518 ± 0.241 0.701 ± 0.834 0.090 ± 0.008 

Overall 0.593 ± 0.535 0.725 ± 0.670 0.164 ± 0.041 

 

 

The regression plots for the corresponding test results are shown in Fig. 2. Pearson’s correlation 
coefficient, R, of 0.810, 0.749, and 0.547 is achieved in predicting FEV1, FVC, and FEV1/FVC, 
respectively. As per [28], this shows a high positive correlation in predicting FEV1 and FVC and 
moderate positive correlation in predicting FEV1/FVC using cough sound descriptors and 
demographic data. 
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Fig. 2.  Regression plot for the cough + demographic feature model as tested on the test dataset 
using support vector regression. 
 

According on the GOLD standard [29], an important criterion in the diagnosis of COPD is that 
FEV/FVC < 0.7. We apply this criterion on the test dataset, the corresponding classification 
results for which are given in Table VII. We first apply this criterion to the laboratory spirometry 
measurements which serves as our reference diagnosis. We then apply the same to the 
spirometry results estimated by the regression models. The cough + demographic feature models 
for both linear and support vector regression are used for this purpose, the results for which are 
given in Table IV and Table VI, respectively. Using both regression models, we could achieve 
sensitivity, specificity, and accuracy of 70% or higher. 

 

Table VII: Classification results using the GOLD criterion (FEV1/FVC < 0.7) on the test dataset. 
The model utilizes cough + demographic features and both linear and support vector regression. 

Model Sensitivity (%) Specificity (%) Accuracy (%) 

Linear Regression 73.33 70.00 72.00 

Support Vector Regression 70.00 70.00 70.00 

 

V. Limitations 

During cough sound recording, having the recorder directly in front of the mouth and too close to 
the mouth resulted in wind noise due to the rapid expulsion of air during cough. Placing the 
recorder at approximately 45° and 20-50cm away from the mouth of the subject minimized this 
problem. This was part of the recording guidelines provided to the clinicians performing the 
recording. We expect the models to behave as per the test results as long as the approximate 
recording device placement guidelines (angle and distance, in particular) are followed as slight 
variations of these have already been captured through the training data used in our models.  

In addition, currently, the method is applicable to iPhone only. If using an iPhone and as per the 
guidelines then no extra calibration would be needed. However, we believe it will work equally 
well with other sound recording devices with similar characteristics. The smart phones of today 
have high fidelity and high bandwidth that were unthinkable a decade ago. The majority of 
features in our method are purpose-designed to be independent of the amplitude of cough 
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sounds. Therefore, slight variations of position or microphone characteristics are not expected to 
affect the results significantly.  

We did not note the exact placement of the recording device during data collection and at this 
stage it is not known how the results may be affected if the recording guidelines are not strictly 
adhered to. Also, it is not known how recording devices with substantially different microphone 
characteristics will affect the performance of the models. These require further investigation 
which may bring about the need for feature calibration. 

In the clinical database of 322 subjects used in this study, we had only 6 subjects presenting with 
obstructive and restrictive disease comorbidity (mixed pattern). The small number of subjects 
makes it difficult to train specific diagnostic models targeting the mixed pattern. Thus, in this 
paper we resort to reporting the performance of our algorithm of the mixed pattern subjects as 
part of the overall model validation procedure. The same process was followed in the case of the 
group “other” (refer to Table I) which comprises a number of disease groups, each of which 
carries insufficient numbers for a targeted model training. We hope to train targeted models on 
these groups when datasets become large enough. 

The study population used in this study was subjects undergoing routine clinical spirometry 
testing in a pulmonary function laboratory of a hospital. The inclusion criteria was the existence 
of respiratory symptoms including cough, sputum production, wheeze, and shortness of breath. 
The validity of the results we present in this paper is currently limited to lung function laboratory 
cohorts. It is not known how coughs generated by conditions such as sleep apnea and post-nasal 
drip would affect the performance of the method. We note, however, while coughs due to benign 
reasons were not specifically part of the study, it included a number of subjects (99 subjects) 
whose spirometry results were normal. 

VI. Discussion and Conclusion 

Results on predicting spirometry readings using cough sound descriptors, demographic data, and 
regression are presented in this paper. All available coughs from each subject were used in 
estimating the spirometry readings. We also experimented with using a smaller number of 
coughs from each subject. However, using smaller number of coughs does not change the 
outcomes but was seen as a waste of opportunity since we had access to multiple coughs from 
each subject. The ability to use more coughs is likely to give an estimate with a lower variance. 
Using all available coughs to make the prediction gives greater confidence in the predicted value.  
Feature selection is a key component of classification and regression tasks and in this work we 
experimented with the sequential backward feature selection strategy. The validation error was 
seen to improve significantly with feature selection but, interestingly, the performance did not 
always translate to the independent test dataset. Apparently, feature selection bias is not a new 
problem and has been seen to be more evident in regression than classification [30]. 

The coefficient of correlation indicates high to moderate positive correlation between cough 
sounds and spirometry readings. Our results provide strong evidence to support the hypothesis 
that cough sounds carry sufficient information to estimate spirometry parameters. This work 
corroborates the initial findings reported in [17] on a small group of normal subjects and asthma 
patients. Our study uses a significantly larger data set and extends the study to represent a more 
realistic group of diseases mimicking the scenario found in a typical respiratory function 
laboratory. In addition, the method we developed is fully automated and can use an iPhone as a 
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sound recorder, computing device as well as the display interface. This greatly facilitates the 
translation of the technology outside of a pulmonary function laboratory and into ambulatory 
clinical settings. 

An important question that arises is how would the diagnostic results using the estimated 
spirometry measurements compare to that based on the laboratory spirometry measurements. 
This is a difficult question to answer since the actual clinical diagnosis procedure in this study 
utilizes a combination of lung function test outcomes, clinical history of the patient and other 
clinical examination results as well as laboratory results, as appropriate. For this reason, we are 
unable to report on the actual diagnostic outcomes directly without running a separate outcome 
study. In order to overcome this problem, we reported the would be clinical diagnosis if the 
diagnosis were based solely on the GOLD standard (using spirometry measurements) and 
compared the performance that would result if we used our cough-based estimations in place of 
spirometry.   
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