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Abstract 
Convolutional neural networks (CNN) have produced 

encouraging results in image classification tasks and have 
been increasingly adopted in audio classification 
applications. However, in using CNN for acoustic event 
recognition, the first hurdle is finding the best image 
representation of an audio signal. In this work, we 
evaluate the performance of four time-frequency 
representations for use with CNN. Firstly, we consider the 
conventional spectrogram image. Secondly, we apply 
moving average to the spectrogram along the frequency 
domain to obtain what we refer as the smoothed 
spectrogram. Thirdly, we use the mel-spectrogram which 
utilizes the mel-filter, as in mel-frequency cepstral 
coefficients. Finally, we propose the use of a cochleagram 
image the frequency components of which are based on 
the frequency selectivity property of the human cochlea. 
We test the proposed techniques on an acoustic event 
database containing 50 sound classes. The results show 
that the proposed cochleagram time-frequency image 
representation gives the best classification performance 
when used with CNN. 
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1. Introduction 
Acoustic event recognition has many applications such 

as urban sound classification [1], fall detection [2], etc. As 
with other pattern recognition problems, a key challenge 
in acoustic event recognition is finding techniques for 
robust classification. 

Convolutional neural networks (CNN) have produced 
encouraging results in image classification tasks such as 
on the ImageNet dataset [3], which has various image 
categories, and handwritten digit recognition [4]. This 
formed the inspiration to its extension to speech 
recognition tasks where it has shown to perform better 
than deep neural networks (DNN) [5]. Acoustic event 
recognition is a relatively new area of research and a 
number of techniques are inspired from other pattern 
recognition tasks, speech recognition, in particular. As 
such, some recent works have adopted CNN for sound 

classification applications [6, 7]. 
CNN is an image classification technique and one of the 

major challenges in speech and acoustic event recognition 
has been how to best represent the audio signal using an 
image for this purpose. Two common approaches have 
been seen in addressing this problem. Firstly, the audio 
signal is converted to spectrogram images [6]. Secondly, a 
mel-filter, as used in computing mel-frequency cepstral 
coefficients (MFCC), is used to form an image-like 
representation [5]. We refer this as the mel-spectrogram. 
To ensure that all images are of an equal size, the audio 
signal is divided into a fixed number of frames [5] or 
image scaling options [7] are explored. In addition, 
techniques such as moving average have been applied to 
spectrograms [8]. 

The spectrogram offers equally spaced frequency 
components with equal bandwidth. This is not ideal for 
modeling the frequency characteristics of acoustic event 
recognition tasks where, depending on the application, 
most spectral energy lies in the lower frequency range. 
While the use of a mel-filter helps to some extent, in this 
work we propose the use of a cochleagram time-frequency 
representation for this purpose. The gammatone filter 
utilized in forming the cochleagram representation is 
modeled on the frequency selectivity property of the 
human cochlea. It offers narrow frequency components in 
the lower frequency range and wide frequency 
components in the upper frequency range. The finer 
frequency resolution in the lower frequency range helps 
reveal more spectral information without significantly 
losing spectral information in the upper frequency range 
[9]. The use of cochleagram has shown to be effective in 
audio classification and separation tasks [10, 11]. 

The rest of the paper is organized as follows. Section 2 
provides an overview of the sound signal image 
representation techniques and the CNN architecture. 
Baseline methods for this work are presented in Section 3. 
In Section 4, we present the experimental setup and results 
followed by conclusion in Section 5. 

2. CNN Method 
An overview of the proposed input layer and the CNN 

architecture employed in this work is given in Fig. 1. The 
generic architecture of CNN has been discussed in detail 
in a number of literature, such as [5], therefore, we only 
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Figure 1: An overview of the proposed input layer and CNN architecture. 

provide an overview of the CNN architecture and settings 
that we used. In this work, our primary focus is the 
formation of the input layer (image) of CNN for audio 
signal classification.  

In this work, we consider spectrogram, smoothed 
spectrogram, mel-spectrogram, and cochleagram time-
frequency images for the input layer. The dimension of the 
input layer image is chosen as 3215, consistent with 
other similar work such as [5]. In addition, our sound 
database includes impulsive sounds and having more 
number of frames would make the frame size small, 
making it difficult to capture distinguishing frequency 
characteristics. 

2.1. Spectrogram 

In forming the spectrogram image, discrete Fourier 
transform (DFT) is applied to the windowed signal as 
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where 𝑁 is the length of the window, 𝑥ሺ𝑛ሻ is the time-
domain signal, 𝑋ሺ𝑘, 𝑟ሻ is the 𝑘௧௛ harmonic corresponding 
to the frequency 𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄  for the 𝑟௧௛ frame, 𝐹௦ is the 
sampling frequency, and 𝑤ሺ𝑛ሻ is the window function. 

The spectrogram values are obtained from log of the 
magnitude of the DFT values as 
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To get the same time-frequency image resolution for all 

signals, each sound event signal is divided into 15 frames 
with 50% overlap between frames. A Hamming window is 
then applied to the frames and Fourier transform 
performed using 64 points so that the final image is 
3215 dimensional.  

2.2. Smoothed Spectrogram 

Non-overlapping moving average computation is 
performed on the frequency components of the 
spectrogram in each frame to obtain a smoothed 
spectrogram. That is, 
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where 𝑊 is the length of the moving average window. 

For the smoothed spectrogram image, each sound event 
signal is divided into 15 frames with 50% overlap between 
frames. A Hamming window is then applied and Fourier 
transform performed using 1024 points. For the smoothed 
spectrogram, the moving window length, 𝑊, is set to 16 to 
get 32 non-overlapping moving windows and a final 
image size of 3215. The log values are then calculated 
as in Eq. (2). 

2.3. Mel-Spectrogram 

The mel-spectrogram image intensity values are 
computed similar to MFCC [12]  but without applying the 
discrete cosine transform (DCT), that is, using the filter 
bank energies. The mel-filter bank output of the 𝑚௧௛ filter 
can be determined as 
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where 𝐸ሺ𝑚, 𝑟ሻ is the filter bank energy of the 𝑚௧௛ filter in 
the 𝑟௧௛ frame, 𝑉ሺ𝑚, 𝑘ሻ is the normalized filter response of 
the triangular filter banks which are equally spaced on the 
mel-scale [13], and 𝑀 is the total number of mel-filters. 

For the mel-spectrogram, the spectrogram image used 
in the smoothed spectrogram is computed and the number 
of mel-filters, 𝑀, is set to 32 to obtain a 3215 image. 
The log values are then calculated as in Eq. (2). 

2.4. Cochleagram 

In the cochleagram representation, the frequency 
components in the time-frequency image are based on the 
frequency selectivity property of the human cochlea and 
modeled by a gammatone filter as [14] 
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where 𝐴 is the amplitude, 𝑗 is the order of the filter, 𝐵 is 
the bandwidth of the filter, 𝑓௖  is the center frequency of 
the filter,  is the phase, and 𝑡 is the time. 

The equivalent rectangular bandwidth (ERB), a 
psychoacoustic measure of the auditory filter width at each 
point along the cochlea, is used to describe the bandwidth 
of each cochlea filter in [14]. In this work, we use the ERB 
filter model as described in [15] which was shown to 
produce the best results in [16].  

After filtering the signal using the gammatone filter, the 
implementation of which can be found in [16, 17], a 
representation similar to the spectrogram is obtained by 
adding the energy in the windowed signal for each 
frequency channel as 
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where 𝑥ොሺ𝑔, 𝑛ሻ is the gammatone filtered signal, 𝐶ሺ𝑔, 𝑟ሻ is 
the 𝑔௧௛ harmonic corresponding to the center frequency 
𝑓௖௚ for the 𝑟௧௛ frame, and 𝐺 is the number of gammatone 
filters. 

With the cochleagram representation, we set the number 
of gammatone filters to 32. The filtered signal is divided 
into 15 frames with 50% overlap between frames. The 
energy in each frame is added to obtain a cochleagram 
image of size 3215. The log values are then calculated 
as in Eq. (2). 

Illustration of spectrogram, mel-spectrogram, and 
cochleagram images of a sample sound signal, mapped to 
the jet colorspace for better visualization, are given in Fig. 
2(a), (b), and (c), respectively. All three representations 
have the same frequency range from 0Hz to the Nyquist 
frequency of 22,050Hz. However, in the cochleagram 
representation, the finer resolution of the frequency 
components in the lower frequency range helps reveal 
more spectral information in the lower frequency range for 
the sound signals considered in this work without losing 
the spectral information in the upper frequency range. 
Refer to [9] for more information on cochleagram image 
formation and a detailed comparison between spectrogram 
and cochleagram representations. 

2.5. CNN 

The layout of the CNN was determined after a number 
of considerations and experimentations. The model is 
trained using stochastic gradient descent with momentum 
[18]. The network includes two convolution layers, each 
of which includes a rectified linear unit (ReLU) [19] and 
followed by a max pooling layer [20]. The filter size for 
both convolution layers is 33, stride 11, and padding 
11. The number of filters in each layer is set to 16 after 
 

experimenting with a number of filters. Similarly, the max 
pooling layer size is 22, stride 11, and padding 11. 
This is followed by a fully connected layer and a softmax 
layer [18] of size 50 and an output layer of size 50. 

The settings for other parameters are as follows: image 
normalizationzero-centering, momentum0.4, initial 
learn rate0.01, learn rate schedulepiecewise, learn 
rate drop factor0.6, learn rate drop period6, L2 
regularization0.05, mini batch size50, data 
shuffleonce, and max epochs = 20. The parameters were 
optimized based on the training/validation performance. 
The training stops after the maximum number of epochs is 
reached. 

3. Baseline Method 
We use three baseline feature sets (MFCC, time-

frequency image feature extraction, and raw time-
frequency image) and two baseline classifiers (K-nearest 
neighbor (KNN) and support vector machines (SVM)) to 
compare the performance of the proposed techniques. 

3.1. MFCC 

Firstly, we use MFCC as features which are computed 
as the DCT of the log compressed filter bank energies 
given as 
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which is evaluated from 𝑙 ൌ 1, 2, … , 𝐿, where 𝐿 is the 
order of the cepstrum. 

The number of mel-filters, 𝑀, was set to 32 to be 
consistent with the approach taken in forming the mel-
spectrogram image for CNN classification. Two 
approaches were then taken for feature representation. In 
the first method, each signal is divided into frames of 1024 
points with 50% overlap between frames. A Hamming 
window is then applied, Fourier transform performed 
using 1024 points, and MFCC values computed in each 
frame. The final feature vector is represented using the 
mean and standard deviation across each of the 32 
dimensions resulting in a 64 dimensional feature vector. In 
the second method, the difference is that each signal is 
divided into 15 frames with 50% overlap between frames 
and the final feature vector represented using raw values 
of dimension 480 (3215). 

3.2. Time-Frequency Image Derived Features 

Secondly, we use time-frequency image feature 
extraction. We use central moments to capture the spectral 
distribution in the spectrogram, a technique which 
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Figure 2: (a) Spectrogram, (b) mel-spectrogram, and (c) cochleagram image of a sample sound signal. The frequency range in each case is 0 – 22,050Hz. 

 
produced encouraging results in [21]. The central 
moments are computed for the spectrogram and 
cochleagram representations and the corresponding 
features referred as spectrogram image feature (SIF) [21] 
and cochleagram image feature (CIF) [16], respectively. 

In computing the SIF, we divide each signal into 1024 
points with 50% overlap. Fourier transform is performed 
using 1024 points. The spectrogram image is divided into 
subbands and second and third central moments are 
extracted as features in each subband. Various number of 
subbands were experimented with but best results were 
achieved when using 64 subbands which results in a 128 
dimensional feature vector.  

For the cochleagram representation, each sound signal 
is filtered using 512 gammatone filters to have same 
number of frequency components as the spectrogram 
image. The filtered signal is divided into frames of size 
1024 with 50% overlap and the energy in each frame 
computed as per Eq. 6. The same feature extraction 
procedure is then followed as the spectrogram image. 

3.3. Raw Time-Frequency Image Feature 

Finally, the raw time-frequency image (3215) values 
were concatenated into a 480 dimensional feature vector 
for classification. The spectrogram, smoothed 
spectrogram, mel-spectrogram, and cochleagram 
representations, as described in section 2.1 – 2.4, were 
used for this purpose. 

3.4. Baseline Classifiers 

The Euclidean distance measure was used for the KNN 
classifier and the value of K was set to 1 after 
experimenting with a number of values. For the SVM 
classifier, nonlinear SVM with a Gaussian RBF kernel in a 
one-against-all strategy is used as it was found to give the 
best results. SVM parameters, the penalty parameter and 
the width of the Gaussian function [22], were tuned using 
Bayesian optimization [23] using 5-fold cross-validation 
 

 

on the training data. 

4. Experimental Evaluation 

4.1. Dataset 

The sound event files used in this work are taken from 
the Real World Computing Partnership (RWCP) Sound 
Scene Database (SSD) in Real Acoustical Environments 
[24]. The sound database has a total of 4000 manually 
segmented sound event files belonging to 50 classes, 80 
files per class. All signals in the database have 16-bit 
resolution and a sampling frequency of 44,100 Hz. 

Each file has one sound event the duration of which 
depends on the class of the sound. The sound event 
duration varies from a minimum of 12.6ms to a maximum 
of 3.84s.  

4.2. Experimental Setup 

For all experimentations, the classifier is trained and 
validated with 50 samples per class with the remaining 30 
samples used for testing. As such, a total of 2500 samples 
are used for training and validating the classifier and the 
remaining 1500 samples used for testing the trained 
model. The classification accuracy is reported in 
percentage as number of correctly classified test samples 
divided by the total number of test samples. The 
classification accuracy in the case of CNN is averaged 
over 10 runs. 

4.3. Baseline Results 

The classification accuracy value using the baseline 
methods is given in Table I. The best baseline 
classification accuracy of 95.07% is achieved using the 
cochleagram image feature vector and SVM classifier. The 
cochleagram image feature vector or cochleagram image 
derived feature vector were seen to be more robust than 
features using other time-frequency representations. 
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Table 1 Results using baseline methods. 

Method 
Feature 

Dimension
Classification 

Accuracy 

MFCC 
MFCC–SVM (Method 1) 64 94.27 

MFCC–SVM (Method 2) 480 93.67 

Time-
frequency 
image 
features 

SIF–KNN 128 70.27 

SIF–SVM 128 84.07 

CIF–KNN 128 82.40 

CIF–SVM 128 88.00 

Raw time-
frequency 
image 
feature 
vector 
(3215) 

Spectrogram–KNN 

480 

63.73 

Spectrogram–SVM 86.87 

Smoothed Spectrogram–KNN 85.00 

Smoothed Spectrogram–SVM 93.47 

Mel-Spectrogram–KNN 89.87 

Mel-Spectrogram–SVM 93.33 

Cochleagram–KNN 95.00 

Cochleagram–SVM 95.07 

 
 

Table 2 Results using different time-frequency representations 
and CNN. 

Method 
Classification 

Accuracy 
Spectrogram–CNN 93.46 

Smoothed Spectrogram–CNN 96.34 

Mel-Spectrogram–CNN 95.35 

Cochleagram–CNN 98.03 

 
 

4.4. Results using CNN 

In this subsection, spectrogram, smoothed spectrogram, 
mel-spectrogram, and cochleagram time-frequency 
representations are considered for classification using 
CNN. Results using the four time-frequency 
representations and CNN for classification are given in 
Table II. For spectrogram, smoothed spectrogram, mel-
spectrogram, and cochleagram, the best classification 
accuracy of 93.46%, 96.34%, 95.35, and 98.03%, 
respectively, is achieved.  

The classification accuracy using the smoothed 
spectrogram, mel-spectrogram, and cochleagram exceed 
the best baseline accuracy of 95.07%. The classification 
accuracy value using the mel-spectrogram is better than 
the spectrogram. Similarly, the classification accuracy 
value using smoothed spectrogram is observed to be better 
than the mel-spectrogram. The best classification accuracy 
of 98.03% is achieved using the cochleagram image. This 
shows the suitability of the proposed cochleagram image 
in acoustic event recognition. 

5. Conclusions 
Four different time-frequency representations, 

spectrogram, smoothed spectrogram, mel-spectrogram, 

and cochleagram, are considered for classification using 
CNN in an acoustic event recognition task. The 
performance with cochleagram image was determined to 
be better than spectrogram, smoothed spectrogram, and 
mel-spectrogram. A classification accuracy of 98.03% 
could be achieved which is an improvement over the best 
baseline classification accuracy of 95.07% using 
cochleagram-SVM. In summary, cochleagram time 
frequency representation is determined to be more suited 
for classification using CNN then the other time-frequency 
image representations for the acoustic event recognition 
task considered in this work. 
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