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Abstract—Convolutional neural networks (CNN) are being 
increasingly used for audio signal classification applications, 
including acoustic event recognition. CNN is an image classifier 
and acoustic event signals are often represented using time-
frequency image for this purpose. However, the length or 
duration of the sound event signals can vary greatly and an 
important consideration is how to equally size time-frequency 
images for classification using CNN. In this paper, we use 
techniques from digital image processing to address this 
problem. In particular, we apply interpolation-based image 
resizing techniques to form equally sized time-frequency 
representations. We consider nearest-neighbor, bilinear, 
bicubic, and Lanczos kernel interpolation methods for this 
purpose. A database containing 50 sound event classes with 
sound events of varying duration is used to evaluate the 
classification performance of these resized time-frequency 
images. The results show that the time-frequency images 
resized using bicubic and Lanczos kernel interpolation 
methods give a much improved classification performance than 
the conventional time-frequency image representation.  
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I. INTRODUCTION 

Convolutional neural networks (CNN) became popular 
with their superior classification performance in image 
classification tasks, such as on the ImageNet dataset [1]. It 
wasn’t long before CNN was adapted for audio 
classification tasks, such as speech [2] and acoustic event 
classification [3], producing improved results against 
various baseline methods. 

CNN is an image classifier. Time-frequency image 
representation of audio signals is the most common 
approach for audio signal classification using CNN, as seen 
in [2, 3] and various other literature. However, unlike image 
classification tasks where input images are often of the same 
dimension, the signal length of acoustic events can vary 
greatly. As such, an important consideration is how to 
represent acoustic events of different signal lengths to same 
time-frequency image dimensions as required for 
classification with CNN. 

A simple approach is to divide the signal into equal 
number of frames and then compute the fast Fourier 
transform (FFT) of all frames with a fixed number of FFT 
points. However, this method has a disadvantage that having 
a large number of FFT points would results in a large time-
frequency image representation which would increase the 

computational costs with CNN classification. On the other 
hand, having a small number of FFT points results in a large 
spacing between frequency components and, as such, 
distinguishing frequency characteristics may not be captured 
well enough resulting in a poor classification performance. 

A compromise for this problem is to compute FFT using 
a large number of FFT points and then use filters to reduce 
the number of frequency components using subband 
energies. The filter reduces the number of frequency 
components by computing the filter bank energies thereby 
retaining the frequency characteristics to some extent. Two 
commonly used filters for this purpose are moving average 
filter and mel-filter. In addition, gammatone filters, the 
frequency components of which are based on the human 
auditory system, have been used in recent work [3]. The 
corresponding time-frequency image representations are 
referred as smoothed spectrogram, mel-spectrogram, and 
cochleagram or gammatone-spectrogram, respectively [3-5].  

Furthermore, the duration of acoustic event signals can 
vary greatly and capturing distinguishing frequency 
characteristics with small frame lengths could be difficult. 
In this case, it is possible to divide audio signals into fixed 
frame length, instead of fixed number of frames, which 
means the number of frames for each acoustic event signal 
will vary, dependent on the length of the sound signal. 
Thereafter, image resizing techniques can be applied to the 
spectrogram image to ensure all CNN input image are of the 
same dimension [6]. 

In this work, we focus on the less conventional approach 
of time-frequency image resizing inspired from work in the 
field of digital image processing. In particular, we look at 
image interpolation methods for this purpose. Five common 
interpolation techniques are studied. These are nearest-
neighbor interpolation, bilinear interpolation, bicubic 
interpolation, Lanczos-2 kernel interpolation, and Lanczos-3 
kernel interpolation. 

The organization of the rest of the paper is as follows. In 
Section II we give details of the different time-frequency 
image resizing techniques. Experimental setup and results 
are presented in Section III and conclusions in Section IV. 

II. TIME-FREQUENCY IMAGE FORMATION 

An overview of conventional time-frequency image 
formation, frequency-filtered time-frequency image 
formation, and resized time-frequency image formation is 
given in Fig. 1. The use of filters in time-frequency image 
formation, such as smoothed spectrogram using moving



 

Fig. 1. An overview of the different time-frequency image formation techniques. 

 

average filter, mel-spectrogram using mel-filter, and 
cochleagram using gammatone filter, has been discussed in 
[3]. In this work, we focus on time-frequency image 
formation using image resizing techniques. The CNN input 
layer image dimension is chosen as 32×15, same as [3]. 
Similar approach has also been used in speech classification 
[2]. 

A. Spectrogram 

In forming the spectrogram image, FFT is applied to the 
windowed signal as 
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where 𝑁 represents the window length, 𝑥ሺ𝑛ሻ represents the 
signal in time-domain, 𝑋ሺ𝑘, 𝑡ሻ  is the 𝑘௧௛  harmonic 
frequency ሺ𝑓ሺ𝑘ሻ ൌ 𝑘𝐹௦ 𝑁⁄ ሻ for the 𝑡௧௛  frame, the sampling 
frequency is given by 𝐹௦, and the window function by 𝑤ሺ𝑛ሻ. 

The log of the magnitude of the FFT values are 
computed to form the spectrogram as 

     , log , .S k t X k t  (2) 

In forming a 32×15 dimensional spectrogram image, 
each signal is divided into 15 frames and the overlap 
between frames is set to 50%. The frames are windowed 
using a Hamming window and 64 points are used in 
computing the FFT values. This results in a 32×15 
dimensional spectrogram image. Illustration of a 
spectrogram image of a sample sound event signal is shown 
in Fig. 2. The jet colorspace is used for mapping the 
grayscale spectrogram for better visualization. 

All time-frequency representations illustrated in this 
paper utilize the same sound event signal and the frequency 
range in each case is same, from 0Hz to the Nyquist 
frequency of 22,050Hz. 

B. Resizing Using Interpolation 

Interpolation is a commonly used technique in digital 
image processing to scale or resize images. It is a process 
through which a continuous image can be spatially defined 
from discrete samples. A common method of interpolation is 
convolving an image with a small kernel with weight 
 

 

Fig. 2. Spectrogram image of size 32×15 using 15 frames, 50% overlap 
between frames, and 64 FFT points. 

 
 
coefficients. Various kernels exist for this purpose. Some 
popular kernels for interpolation by convolution are nearest-
neighbor, bilinear, bicubic, Lanczos-2, and Lanczos-3. 

1) Nearest-Neighbor Interpolation 
Nearest neighbor interpolation is a very simple 

interpolation algorithm which selects the value of the closest 
or nearest neighboring point [7], that is, 

     ,NN x yR x y S  (3) 

where ሾ. ሿ denotes rounding to the nearest integer. 

The nearest-neighbor interpolation kernel in one 
dimension can be given as 
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2) Bilinear Interpolation 
Bilinear interpolation can be seen as an extension of 

linear interpolation in both 𝑥 and 𝑦 directions. The solution 
to the interpolation can be given as  

   0 1 2 3,BLR x y a a x a y a xy     (5) 

where 𝑎଴, 𝑎ଵ, 𝑎ଶ and 𝑎ଷ  are determined from the four 
nearest neighbors of ሺ𝑥, 𝑦ሻ. It can be implemented using a 
triangular kernel as 



  
1 , 1

0, .

x x
k x

otherwise

 
 


 (6) 

3) Bicubic Interpolation 
Unlike bilinear, bicubic resamples using 16 neighboring 

pixels and the interpolation can be given as 
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where 𝑎௜௝ are determined from the sixteen nearest neighbors 
of ሺ𝑥, 𝑦ሻ. Bicubic interpolation can be achieved by applying 
convolution with the following kernel [8] 
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4) Lanczos Kernel Interpolation 
The Lanczos kernel is a normalized sinc function [9] 

windowed by the sinc window which can be equivalently 
written as [10] 
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where 𝑎  is a positive integer; the kernel is referred as 
Lanczos-2 when 𝑎 ൌ 2 and Lanczos-3 when 𝑎 ൌ 3.  

The Lanczos interpolation can then be computed as [7] 
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where ⌊𝑥⌋ is the floor function of 𝑥, 𝑎 is the filter size, and 
𝑆௜ is a one dimensional signal. The Lanczos kernel in two 
dimensions can be given as 𝐿ሺ𝑥, 𝑦ሻ ൌ 𝐿ሺ𝑥ሻ𝐿ሺ𝑦ሻ. 

Illustration of resized spectrograms, from the original 
spectrogram representation of Fig. 3(a), using nearest-
neighbor interpolation, bilinear interpolation, bicubic 
interpolation, Lanczos-2 kernel interpolation, and Lanczos-3 
kernel interpolation are given in Fig. 3(b)-(f), respectively. 
The log spectrogram image is resized in each case. 

III. EXPERIMENTAL EVALUATION 

A. Dataset 

The Real World Computing Partnership (RWCP) Sound 
Scene Database (SSD) in Real Acoustical Environments [11] 
is utilized in this work. The final dataset has a total of 4000 

manually segmented sound event files, 80 files per each of 
the 50 classes. The sampling frequency of the signals is 
44,100 Hz with 16-bit resolution. 

B. Experimental Setup 

The network architecture and parameter settings of the 
CNN used in this work is same as [3]. The classifier is 
trained and validated with 50 samples per class for each 
spectrogram representation. The remaining 30 samples are 
used for testing the trained model. Therefore, the classifier is 
trained and validated using 2500 samples and the trained 
model is tested on the remaining 1500 samples. The 
classification accuracy, defined as the percentage of 
correctly classified test samples divided by the total number 
of test samples, is used to evaluate the performance of each 
time-frequency representation. The classification accuracy in 
each case was averaged over 10 runs. 

C. Results 

Results using the conventional spectrogram image and 
the various resized spectrograms with CNN classification are 
given in Table I. A baseline classification accuracy of 
93.46% is achieved using the conventional spectrogram 
image. However, marginally to significantly better 
classification accuracy could be achieved when using the 
resized spectrogram as input image to the CNN classifier. 
The increase in classification accuracy over the baseline 
method are 0.41%, 3.29%, 3.67%, 3.62%, and 3.65% using 
nearest-neighbor, bilinear, bicubic, Lanczos-2, and Lanczos-
3 interpolation methods, respectively.  

The average RMSE for the image interpolation methods 
considered in this work are given in Table II. The procedure 
described in [12] was used in computing the RMSE. The 
smallest average RMSE is achieved using Lanczos-3 
followed by Lanczos-2 and bicubic interpolation. Bicubic 
and Lanczos kernel interpolation methods have also been 
seen to produce low RMSE in digital image scaling 
applications, such as [13]. A classification accuracy of 
97.13%, 97.08%, and 97.11% is achieved using bicubic, 
Lanczos-2, and Lanczos-3 kernel resized spectrograms, 
respectively, which are deemed to be the best suited for the 
application considered here. 

In [3], using the same dataset and CNN architecture, a 
classification accuracy of 96.34%, 95.35%, and 98.03% was 
achieved with smoothed spectrogram, mel-spectrogram, and 
cochleagram, respectively. As such, the time-frequency 
representation formed using bicubic, Lanczos-2, and 
Lanczos-3 interpolation methods exceed the classification 
accuracy achieved using smoothed spectrogram and mel-
spectrogram and are only marginally lower than the 
cochleagram representation. In addition, the resized 
spectrograms have an advantage in that scaling is done in 
both time and frequency dimensions eliminating the need for 
fixed number of frames and FFT points. 

IV. CONCLUSION 

Five image resizing techniques, nearest-neighbor 
interpolation, bilinear interpolation, bicubic interpolation, 
Lanczos-2 kernel interpolation, and Lanczos-3 kernel 
interpolation, are considered for time-frequency image 
resizing in acoustic event recognition using CNN. With a 
classification accuracy of over 97%, best results were 
achieved using spectrogram images resized using bicubic 
and Lanczos kernel interpolation methods. These results are



 
(a) Spectrogram image of size 512×34 

 
(b) Spectrogram from (a) resized to 32×15 using 

nearest-neighbor interpolation 

 
(c) Spectrogram from (a) resized to 32×15 using 

bilinear interpolation

 
(d) Spectrogram from (a) resized to 32×15 using 

bicubic interpolation 

 
(e) Spectrogram from (a) resized to 32×15 using 

Lanczos-2 kernel 

 
(f) Spectrogram from (a) resized to 32×15 using 

Lanczos-3 kernel

Fig. 3.  (a) Spectrogram image of size 512×34 using frame length of 1024 points, 50% overlap between frames, and 1024 FFT points. The number of 
frames in this case is 34 but will differ for sound events with different signal length. Spectrogram from (a) resized to 32×15 using (b) nearest-neighbor 
interpolation, (c) bilinear interpolation, (d) bicubic interpolation, (e) Lanczos-2 kernel interpolation, and (f) Lanczos-3 kernel interpolation. 

 

TABLE I.  CLASSIFICATION RESULTS USING CONVENTIONAL AND 
VARIOUS RESIZED TIME-FREQUENCY IMAGE REPRESENTATIONS WITH 

CNN. 

Time-frequency representation 
Classification 
Accuracy 

Spectrogram 93.46 

Resized spectrogram (nearest-neighbor) 93.87 

Resized spectrogram (bilinear) 96.75 

Resized spectrogram (bicubic) 97.13 

Resized spectrogram (Lanczos-2) 97.08 

Resized spectrogram (Lanczos-3) 97.11 

TABLE II.  AVERAGE RMSE FOR THE DIFFERENT IMAGE 
INTERPOLATION METHODS APPLIED TO THE TIME-FREQUENCY IMAGES. 

Image interpolation method RMSE 

Nearest-neighbor 4.7740 

Bilinear 3.5500 

Bicubic 3.4338 

Lanczos-2 3.4316 

Lanczos-3 3.3957 

 
 

also better than what was achieved using smoothed 
spectrogram and mel-spectrogram in earlier work and only 
marginally lower than the results using cochleagram 
representation. In addition, the proposed methods have an 
advantage that there is no need for fixed number of frames 
and FFT points in computing the time-frequency image. 

REFERENCES 
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification 

with deep convolutional neural networks," in Advances in neural 
information processing systems, 2012, pp. 1097-1105. 

[2] O. Abdel-Hamid, A. R. Mohamed, H. Jiang, L. Deng, G. Penn, and D. 
Yu, "Convolutional neural networks for speech recognition," 
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 
vol. 22, no. 10, pp. 1533-1545, 2014. 

[3] R. V. Sharan and T. J. Moir, "Acoustic event recognition using 
cochleagram image and convolutional neural networks," Applied 
Acoustics, vol. 148, pp. 62-66, 2019. 

[4] J. Salamon and J. P. Bello, "Deep convolutional neural networks and 
data augmentation for environmental sound classification," IEEE Signal 
Processing Letters, vol. 24, no. 3, pp. 279-283, 2017. 

[5] H. Zhang, I. McLoughlin, and Y. Song, "Robust sound event 
recognition using convolutional neural networks," in 2015 IEEE 
International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), 2015, pp. 559-563. 

[6] I. Ozer, Z. Ozer, and O. Findik, "Noise robust sound event classification 
with convolutional neural network," Neurocomputing, vol. 272, pp. 505-
512, 2018. 

[7] C. F. Stallmann and A. P. Engelbrecht, "Signal modelling for the digital 
reconstruction of gramophone noise," in International Conference on E-
Business and Telecommunications (ICETE) 2015 Colmar, France, 2016, 
pp. 411-432. 

[8] R. Keys, "Cubic convolution interpolation for digital image processing," 
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 
29, no. 6, pp. 1153-1160, 1981. 

[9] W. B. Gearhart and H. S. Shultz, "The function sin x/x," The College 
Mathematics Journal, vol. 21, no. 2, pp. 90-99, 1990. 

[10] K. Turkowski, "Filters for common resampling tasks," in Graphics 
Gems, A. S. Glassner, Ed. San Diego: Morgan Kaufmann, 1990, pp. 
147-165. 

[11] S. Nakamura, K. Hiyane, F. Asano, T. Nishiura, and T. Yamada, 
"Acoustical sound database in real environments for sound scene 
understanding and hands-free speech recognition," in Proceedings of the 
2nd International Conference on Language Resources and Evaluation 
(LREC 2000), Athens, Greece, 2000, pp. 965–968. 

[12] A. Amanatiadis and I. Andreadis, "A survey on evaluation methods for 
image interpolation," Measurement Science and Technology, vol. 20, 
no. 10, p. 104015, 2009. 

[13] P. Getreuer, "Linear methods for image interpolation," Image 
Processing On Line, vol. 1, pp. 238-259, 2011. 


