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Abstract

Background: The differential diagnosis of paediatric respiratory conditions is difficult and suboptimal. Existing
diagnostic algorithms are associated with significant error rates, resulting in misdiagnoses, inappropriate use of
antibiotics and unacceptable morbidity and mortality. Recent advances in acoustic engineering and artificial
intelligence have shown promise in the identification of respiratory conditions based on sound analysis, reducing
dependence on diagnostic support services and clinical expertise. We present the results of a diagnostic accuracy
study for paediatric respiratory disease using an automated cough-sound analyser.

Methods: We recorded cough sounds in typical clinical environments and the first five coughs were used in
analyses. Analyses were performed using cough data and up to five-symptom input derived from patient/parent-
reported history. Comparison was made between the automated cough analyser diagnoses and consensus clinical
diagnoses reached by a panel of paediatricians after review of hospital charts and all available investigations.

Results: A total of 585 subjects aged 29 days to 12 years were included for analysis. The Positive Percent and
Negative Percent Agreement values between the automated analyser and the clinical reference were as follows:
asthma (97, 91%); pneumonia (87, 85%); lower respiratory tract disease (83, 82%); croup (85, 82%); bronchiolitis (84,
81%). Conclusion: The results indicate that this technology has a role as a high-level diagnostic aid in the
assessment of common childhood respiratory disorders.

Trial registration: Australian and New Zealand Clinical Trial Registry (retrospective) - ACTRN12618001521213: 11.09.
2018.
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Background
In paediatrics, respiratory disorders represent the second
most common reason for attendance at Emergency De-
partments (ED) [1, 2] and are a significant global disease
burden [3]. Common conditions in childhood include
croup, upper respiratory tract infections (URTI), and
lower respiratory tract diseases (LRTDs) such as asthma/
reactive airway disease (RAD), bronchiolitis, pneumon-
itis and pneumonia [2, 4]. Lower respiratory tract infec-
tions are a significant cause of mortality in children aged
under 5 years and a leading cause of disability-adjusted
life years lost worldwide [5–7]. Asthma represents the
leading cause of non-fatal disease burden in Australian
children under age 14 years [8, 9].
The differential diagnosis of respiratory disorders can be

challenging even for experienced clinicians with access to
diagnostic support services. Respiratory diagnosis may re-
quire multiple assessment modalities including clinical
and auscultatory examinations, medical imaging,
bronchodilator-response testing, spirometry and body
fluid analyses. The accurate identification of airway sounds
during auscultation is dependent on clinical training and
experience [10, 11]. The ability to select and undertake ap-
propriate testing may be restricted in many settings in-
cluding in community health care and remote areas
because of limitations with access to clinical expertise and
tests. In hospitals with access to imaging and laboratory
services, diagnostic support testing requires resources in
terms of clinical staffing, time and monetary costs. More-
over, studies have consistently reported difficulties with
inter-rater reliability in radiographic interpretation [12–
14]. Diagnostic delays and errors can result in suboptimal
therapy with negative implications for morbidity, mortality
[15], and antibiotic stewardship [16].
We have previously described a method to diagnose

pneumonia based on the automated analysis of cough
sounds [17]. With pilot studies demonstrating a sensitiv-
ity of 94% and specificity 88% for differentiating pneu-
monia from no disease, this method has been shown to
outperform the World Health Organization (WHO)
clinical algorithm for pneumonia diagnosis in
resource-poor regions [18]. Subsequently, we have de-
scribed similar technology for the diagnosis of croup,
the most common cause of upper airway obstruction in
children between 6 months and 6 years; [19, 20] and re-
ported on the tool’s ability to predict spirometry read-
ings in adults with chronic lung disease [21]. In these
studies, automated cough sound analysis required min-
imal operator training, and was able to provide robust
diagnostic accuracies for the specified conditions with-
out the need for clinical auscultation or diagnostic sup-
port testing.
We propose that the lungs are connected to the at-

mosphere via an unimpeded column of air during a

cough. This forced expiratory air column supports a
greater bandwidth than that across the chest wall relied
upon in clinical auscultation, and sounds generated in-
side the lungs propagate through this air column. The
pathophysiological changes caused by different respira-
tory conditions modulate the sound quality. We use
methods akin to that in speech recognition technology
to analyse cough and associated sound streams. The
identification of unique sound signatures characteristic
of different conditions led to the development of an al-
gorithm to test cough sounds for the presence of these
signatures [17].
In this study, we used a trained algorithm to analyse a

prospective dataset of cough sounds from a cohort with
mixed respiratory pathologies. The objective was to
compare diagnoses made by the algorithm to those from
a clinical adjudication panel (who had access to all med-
ical records and diagnostic support service results) in
order to determine positive and negative per cent agree-
ment for a number of respiratory conditions.
The study hypothesis was that automated cough sound

analysis is non-inferior to existing standard-of-care clin-
ical diagnosis for identifying URTI, croup and LRTDs
(i.e. respiratory disorder below the level of the larynx)
including asthma/RAD, bronchiolitis and pneumonia in
children.

Methods
Study design
This was a prospective, multi-centre study comparing
diagnosis of paediatric respiratory illnesses using an au-
tomated cough sound analytic algorithm to clinical diag-
nosis. Investigator teams comprised: (i) data collection
and clinical adjudication panel (ii) algorithm develop-
ment group (iii) index testing team (iv) statistical analyst.
The teams were blinded to other team’s work, and clin-
ical diagnoses and index test results were only merged at
statistical analysis level.
This study was approved by the Human Research Eth-

ics Committees of Joondalup Health Campus, Princess
Margaret Hospital for Children, The University of
Queensland and Curtin University. Written informed
consent was obtained from all parents/guardians. Chil-
dren over 5 years were asked for their assent to
participate.

Study sample
Between March 2015 and August 2018, a convenience
sample of children aged 29 days to 12 years was recruited
into this study at two hospitals in Western Australia; the
sole tertiary paediatric hospital in the state and a large
suburban general hospital. At each site, enrolment oc-
curred in multiple locations reflecting the intended use
of the technology, including emergency departments
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(ED), inpatient wards and lower acuity ambulatory care
units. Inclusion and exclusion criteria are presented in
Table 1. Cases were not excluded or stratified by disease
severity. All cases presenting to hospital and who met
inclusion criteria were eligible.

Study protocol
Cough sound, demographic and medical data were col-
lected. The study did not intervene with clinical care de-
livered by the patients’ care providers.

Cough recording
The cough recordings and clinical examinations were
performed at the same time. Cough audio streams were
recorded on iPhone 6 phones (running on instrumenta-
tion mode) at a sample rate of 44,100 samples/s and a
bit depth of 16 bits per sample held 25-50 cm away from
the mouth and with the microphone angled towards the
subject at 45 degrees to avoid air hitting the microphone
[22]. Recordings were undertaken by a specialist paediat-
ric research nurse in realistic hospital environments
where background noises included talking, crying, med-
ical devices, footsteps and doors. Care was taken not to
record coughs from other people or television sounds.
Between five and ten spontaneous or voluntary coughs
were recorded from each child.

Internal work has shown no audio data differences be-
tween spontaneous and voluntary coughs.
A proprietary software app developed by ResApp

Health was used for the work. Recorded data were ana-
lysed off-line on Macintosh computers using proprietary
C++ software developed using a machine learning ap-
proach. The entire process was automated. An auto-
matic cough detector was developed which identifies
cough sounds using Time Delay Neural (TDNN) Net-
work operating and identifying Mel Frequency Cepstral
Coefficients (MFCC) from a continuous audio stream
[22, 23]. It calculates features from the audio stream to
form a feature vector which is then used to classify
audio segments as either cough or non-cough by a
machine-learning classifier. The classifier has previously
been trained from a dataset of manually selected cough
and non-cough events. The audio segments are then
combined to form completed cough events.

Clinical data
Data collected from hospital charts included demo-
graphics, medical history, presenting symptoms, vital
signs and other clinical (such as auscultatory) findings,
response to treatment including bronchodilators, as well
as the results of investigations performed.

Clinical diagnoses
Table 2 shows the definitions used to arrive at each diag-
nosis. Definitions were derived by a panel of advisors in-
cluding physicians from Australia and the USA after
consideration of international guidelines [24–26].
Each clinical diagnosis was determined by an adjudica-

tion panel comprising four consultant paediatric clini-
cians (median 15 years of specialist practice). Two
members reviewed each subject independent of each
other, with a third member acting as tie-breaker in the
event of non-agreement. The panel arrived at diagnoses
after assessment of all available clinical (including radi-
ology) data. Only where a diagnosis of croup was sus-
pected was the panel able to listen to the cough sound
files. Clinical diagnoses were concluded before testing of
the cough algorithm to ensure blinding was maintained.
There were three outcomes for each disease: “YES”,

“NO” or “UNSURE”, where “UNSURE” indicated that
the case definition was not entirely met due to lack of
information or where symptoms had been significantly
altered by treatment before enrolment. These cases were
excluded from that disease endpoint. Each subject could
be diagnosed as “YES” for more than one disease. For
example, LRTD is a broad group which includes all pa-
tients with asthma/RAD, bronchiolitis and pneumonia,
as well as other conditions meeting the case definitions
shown in Table 2.

Table 1 Study inclusion and exclusion criteria

Inclusion criteria

• Age > 29 days and < 12 years

AND at least one of the following:

• Rhinorrhoea

• Cough

• Wheeze

• Stridor

• Increased work of breathing

• Shortness of Breath

Exclusion criteria

• Lack of consent

• No respiratory disease

• Mechanical ventilation (invasive, CPAP, or BiPAP) or high-flow nasal
cannula

• Unable to provide at least 5 coughs (Voluntary or spontaneous)

• Medical contraindication to voluntary cough, including

○ Severe respiratory distress

○ History of pneumothorax

○ Eye, chest, or abdominal surgery past 3 months

• Too medically unstable to participate in study as per treating clinician

• Structural airway disease including laryngo/tracheomalacia.
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Development of index Test algorithm
The diagnostic algorithm [17, 18, 27] was developed
using extraction of mathematical features from cough
samples, with selected features used to build a classifier
model [17].
In order to refine the algorithm for this study, we used

the initial 852 cough sound datasets (collected March
2015-Dec 2016) combined with clinical diagnoses. The
method of analysis consisted of automatically picking all
cough events from each audio recording, calculating
mathematical features such as Mel Cepstral coefficients
from coughs, calculating a pre-determined set of signa-
tures and feeding the signatures to a SoftMax neural
network trained to diagnose target diseases. The outputs
of the SoftMax layer were further processed using prob-
ability compositions before a diagnostic decision was
reached. These elements were customised and optimised
separately for each target disease using the training set;
each target disease group had its own signature, SoftMax
layer and post-processing logic. An optimal model, using
cough sounds only, was designed using a leave-one-out
cross-validation procedure. In this method, all available
cough sound signals from a single patient were used for
testing and cough sound signals from all other patients
were used for training the classifier, making the trained
model independent of the test patient. This process was
repeated for all patients resulting in the number of
trained models equal to the number of patients. Each

disease model was developed independently using diag-
noses for that particular disease only, without consider-
ation of results for other diseases.
A diagnostic algorithm was then developed for the

prospective testing phase: Features were selected from a
group of up to five parent/guardian-reported symptoms
including the presence or absence of (i) fever (ii) rhinor-
rhoea (iii) audible wheeze (not stridor) (iv) hoarse voice
and (v) maximum days of symptoms. The individual
clinical features used varied across different disease
models. The optimal combination of features was se-
lected using a ROC with due consideration given to
achieving a balance of PPA and NPA [17].
The number of cases used for training the algorithm

was 50 for croup, 102 for bronchiolitis, 193 for RAD, 72
for pneumonia, 121 for URTI, 522 for LRTD and 123
had no disease.

Prospective testing of optimised diagnostic algorithm
Between Dec 2016 – Aug 2018, we recruited children
for a prospective diagnostic accuracy trial from the same
sites using the same inclusion/exclusion criteria. This
group of children (n = 585) were independent of the
group used to develop the algorithm (n = 852). Clinical
diagnoses were determined by the clinical adjudication
panel and were completed before index test analysis.
The analysis of the cough sound files plus symptom data
by the algorithm was conducted by an independent

Table 2 Clinical Diagnosis Definitions

Disease Required features to reach a clinical diagnosis

Upper respiratory tract disease
(URTD)

• Nasal congestion, rhinorrhoea or a sore throat.

Lower respiratory tract disease
(LRTD)

• One or more of the following:
○ Wheezing or silent chest (in the setting of obstruction) at the time of recording
○ Any auscultatory findings, including crackles, bronchial breath sounds, or focally decreased breath sounds
○ Increased work of breathing unless purely associated with stridor
○ A productive cough > 5 days
○ New consolidation, infiltrate or pleural effusion on CXR

Asthma/RAD • Wheeze or silent chest at the time of recording
• Responsive to bronchodilators during this illness
• Diagnosis is Unsure if:
○ No bronchodilator testa administered
○ Pre-treated with bronchodilators with wheeze resolved at the time of recording

Bronchiolitis • Age < 24months
• Must have both:
o A persistent cough and
o Diffuse wheeze that is non-responsive to bronchodilator (if administered) and/or diffuse crackles

Pneumonia (Focal) At least one feature from both of the following categories:
1. History of: (i) fever in prior 48 h or fever at the time of examination, (ii) cough, (iii) dyspnoea, or (iv) chest
pain
2. Either focalb examination findings including crackles, bronchial breath sounds, focal decreased breath
sounds; OR
A chest radiograph with new consolidation with normal auscultation findings

Croup • Typical seal-like barking cough on the cough recording.
a Bronchodilator test: administration of Salbutamol MDI via spacer up to 3 times over 1 h at the following doses: 6 puffs for children < 6 yrs., 12 puffs for
children > 6 yrs.
b Pneumonia (Focal) implies the absence of generalised findings on auscultation reflecting generalised LRTD such as RAD and bronchiolitis
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researcher unrelated to the clinical sites and the algo-
rithm development team. The algorithm output was
compared to the reference clinical diagnosis by an inde-
pendent statistical team.
For the optimised algorithm as used for this set, auto-

matic segmentation extracted only the 5 five coughs for
analysis. For each recording, the algorithm determined
diagnoses using cough data plus features picked from a
group of five parent/guardian-reported symptoms in-
cluding the presence or absence of (i) fever (ii) rhinor-
rhoea (iii) audible wheeze (not stridor) (iv) hoarse voice
and (v) maximum days of symptoms (i-iv). No attempt
was made to stratify the degree of fever or severity of
wheeze. The index test delivered a binary response:
“YES” or “NO” for each disease.

Statistical analysis
Power calculations were derived as follows. Based on ex-
pected positive and negative per cent agreement greater
than 85% from the training program, to obtain a super-
iority end-point of 75% (lower bound 95% CI of max-
imum width ± 0.10) a minimum of 48 cases were
required for each disease. Using the prevalence of focal
pneumonia (the least prevalent targeted condition) in
the training arm of 11%, and assuming a 10% attrition
rate, a minimum cohort of 480 were needed.
As clinical diagnoses were considered non-reference

standard measures, the primary measures of diagnostic
agreement used were Positive Percent Agreement (PPA)
and Negative Percent Agreement (NPA). PPA are those
clinical diagnosis-positive cases who are also positive for
the index test; NPA are those clinical diagnosis-negative
cases who are also negative for the index test. 95% confi-
dence intervals around these parameters were calculated
using the method of Clopper-Pearson.

Results
Study population
Six hundred fifty-nine subjects were approached to par-
ticipate of which 585 (88.8%) were used for analysis
(Fig. 1). The non-analysed group (n = 74) was signifi-
cantly younger (mean 36months, SD 29months) from
the analysed group (mean 53months, SD 37 months).
Reflecting technical difficulties with cough collection in
the younger cohort, 84% of children ≤24 months were
analysable vs 92% of children > 24 months. The groups
did not differ in terms of sex. In the analysed group 59%
were male, and 28% were ≤ 24months. 176/585 (30.1%)
were ED-only patients, 367/585 (62.7%) were recruited
from the inpatient wards, 28/585 (4.8%) were recruited
from ambulatory care units and for 14/585 (2.4%) the re-
cruitment site was not recorded.
The number of cases achieving consensus clinical

diagnosis and available for index testing is shown in

Table 3. A third adjudicator was required to tie-break in
30% of subjects (pneumonia = 6%, asthma/RAD = 18.8%,
LRTD = 30%, bronchiolitis = 34%). Of the 419 subjects
with a diagnosis of LRTD, 340 had a specific diagnosis
of: asthma/RAD (n = 149), Bronchiolitis (n = 131) or
pneumonia (n = 60) as per the study definitions. Of
these, 1 subject had both asthma/RAD and bronchiolitis,
while 3 subjects had both bronchiolitis and pneumonia.
The remaining 80 subjects had a LRTD diagnosis not
further specified.

Diagnostic test results
Table 4 shows PPA and NPA stratified by age for three
age groups: 29 days to 12 years, 29 days to 2 years and 2
years to 12 years for each disease.
For all children (29 days to 12 years), the asthma/RAD

algorithm achieved excellent agreement results (PPA =
97%, NPA = 91%) as did pneumonia (PPA = 87%, NPA =
85%), LRTD (PPA = 83%, NPA = 82%) and croup (PPA =
85%, NPA = 82%). Bronchiolitis achieved PPA of 84%
and NPA of 81%. However the paucity of children with-
out respiratory disease under 2 years of age resulted in a
wide confidence interval for NPA.
For children aged 2–12 years agreement was also ex-

cellent for LRTD (PPA = 80%, NPA = 83%), asthma/RAD
(PPA = 98%, NPA = 88%), croup (PPA = 87%, NPA =
83%), pneumonia (PPA = 85%, NPA = 80%) and URTD
(PPA = 80%, NPA = 77%).
For children aged 29 days to 2 years, though the results

achieved for asthma (PPA = 98%, NPA = 88%), pneumo-
nia (PPA = 85%, NPA = 80%) and URTD (PPA = 80%,
NPA = 77%) were high, there were low number of dis-
ease positive participants recruited and more data will
be required for this age group.

Discussion
The study results show that the performance of the au-
tomated algorithm was not inferior to pre-specified end-
points for diagnosing asthma, croup, pneumonia and
lower respiratory tract disease from a group of mixed
paediatric respiratory disorders.
The algorithm’s used cough analysis in combination

with 5-symptom input obtained from parent/guardian
history; without the need for clinical examination or fur-
ther investigations. The symptoms entered into the algo-
rithm were simple questions that we anticipate most
parents can answer irrespective of cultural or educa-
tional background. The algorithm’s diagnostic accuracy
may be further improved with the additional input of
clinical signs such as respiratory rate or chest recessions.
This will be examined in a future study.
The results for clinical pneumonia (all ages: PPA 87%,

NPA 85%) exceeds other scoring systems including the
WHO criteria for clinical pneumonia diagnosis which is
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based upon clinical signs and symptoms and where sen-
sitivity is prioritised (sensitivity range: 19–96%, specifi-
city range 12–76%) [28]. Whereas earlier work
established the system’s ability to isolate pneumonia
from any respiratory disease, this study has demon-
strated its ability to also differentiate pneumonia and
other specified respiratory disorders from a mixed, un-
differentiated group.
To address international guidelines aimed at minimis-

ing the over-diagnosis of pneumonia, and to establish
consistency of diagnosis in the adjudication panel, we
defined clinical pneumonia to reflect focal/lobar path-
ology in the absence of another generalised lower re-
spiratory disease such as RAD, pneumonitis or
bronchiolitis. This avoided over-diagnosing pneumonia
in generalised LRTDs where radiology was performed
and showed abnormalities. The WHO has defined radio-
logical findings to detect bacterial lung disease in
post-vaccination surveillance programs [12]. However, a
high proportion of children with Respiratory Syncytial

Virus positive bronchiolitis were found to have radio-
graphs consistent with the WHO radiological definition
for pneumonia (consolidation of a lobe or whole lung);
indicating that imaging has reduced predictive value for
bacterial disease in settings of high viral activity [29, 30].
Current guidelines recommend against the use of diag-
nostic imaging in conditions such as bronchiolitis and
asthma [26, 31, 32]. Despite this, chest radiographs con-
tinue to be inappropriately ordered resulting in unneces-
sary antibiotic use [33–36].
The algorithm’s performance for RAD was excellent

(PPA 97%, NPA 91%) and it is significant that the ana-
lyser was able to diagnose RAD at a high-performance
level without the need for bronchodilator-response test-
ing. 9.4% of the recruited RAD cases were excluded from
analysis because of bronchodilator pre-treatment that
resulted in substantially altered symptoms at the time of
cough measurement. Study criteria required RAD cases
to have wheeze or silent chest as a marker of active dis-
ease. Although this excluded partially treated cases

Fig. 1 Flow diagram showing enrolment pathway and exclusions

Table 3 Number of cases per disease group attaining consensus (yes / no) clinical diagnosis

Clinical Diagnosis Study participants (n) Subjects without a (yes/no) consensus diagnosis (n) Subjects used for index testing (n)

LRTD 585 12 (2%) 573

ASTHMA/RAD 585 55 (9.4%)a 530

CROUP 585 17 (2.9%) 568

PNEUMONIA 585 16 (2.7%) 569

URTD 585 14 (2.3%) 571

BRONCHIOLITIS 166b 9 (5.4%) 157
a RAD: Cases excluded from Index testing due to pre-treatment with bronchodilator leading to wheeze resolution before recording
b Bronchiolitis: 419 cases excluded as > 24 months old
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where wheeze had resolved, it may be possible for the
analyser to detect those in which some obstruction may
still be present. Further work is required to investigate
this.
We have previously shown that cough analysis has

utility in predicting spirometry results in adults [21]. If
this is replicated for childhood RAD, the ability to detect
disease and measure severity will enhance asthma man-
agement programs. The ability to differentiate RAD
from pneumonia is particularly important for
low-income countries in which guidelines favour pneu-
monia over RAD diagnosis such that up to 50% of chil-
dren under 5 years diagnosed with pneumonia could be
reclassified as asthma [37]. This has resulted from a
focus on not missing infectious disease, as well as the
difficulties associated with bronchodilator testing which
is time-consuming and requires expertise to interpret.
The ability of the cough analyser to differentiate RAD
from pneumonia may improve diagnostic accuracy,
resulting in more appropriate therapy and improved
health resource efficiencies.
In broader terms, the algorithm’s ability to accurately

identify LRTDs from pure upper respiratory disease may
be useful in triage, telehealth, community and remote
area medicine by guiding on when to attend or escalate
medical care. The system may be useful as a diagnostic

aid in acute care settings, or in places where clinical ex-
pertise and diagnostic support services are lacking and
have implications for triage-initiated treatment path-
ways. In consultations where there is limited ability to
undertake clinical and auscultatory examinations, the
cough analyser may be useful as it can approximate
existing standard-of-care clinical diagnoses. The tele-
health industry is a rapidly growing health sector with
more than 30% of consults per year in the US for re-
spiratory complaints [38]. Significant cost savings may
be realised by reducing the need for investigations and
improving antibiotic stewardship.
The algorithm can be integrated into smartphones

which also serve as the cough sound acquisition device.
Advantages of using these devices include they (i) meet
acoustic requirements (bandwidth, noise levels, and
transduction-sensitivity) needed for respiratory sound
recording, (ii) are ubiquitous devices even in the devel-
oping world, (iii) possess substantial computing power
allowing for analyses with no requirement for connectiv-
ity, (iv) enable non-contact assessments ideal for infec-
tion control and for use in children or non-compliant
subjects, (v) are usable in realistic clinical settings where
background noise is a factor. This allows for an
all-in-one data acquisition, analysis and decision-making
device.

Table 4 Results for Index Test versus Clinical diagnoses per age groups

Clinical Condition Clinical Diagnosis Positive (n) Index Test

Yes No Positive Percent Agreement (95% CI) Negative Percent Agreement (95% CI)

Subjects 29 days – 12 years

LRTD 419 154 83% (79–86%) 82% (75–88%)

ASTHMA/RAD 149 381 97% (92–99%) 91% (88–94%)

CROUP 68 500 85% (75–93%) 82% (78–85%)

PNEUMONIA 60 509 87% (75–94%) 85% (82–88%)

URTD 89 482 79% (69–87%) 80% (76–84%)

BRONCHIOLITIS 131 26 84% (77–90%) 81% (61–93%)

Subjects 29 days - 2 years

LRTD 145 19 88% (82–93%) 74% (49–91%)

ASTHMA/RAD 10 149 80% (44–97%) 97% (93–99%)

CROUP 15 146 80% (52–96%) 79% (72–86%)

PNEUMONIA 6 160 100% (54–100%) 97% (93–99%)

URTD 4 158 50% (7–93%) 87% (80–92%)

BRONCHIOLITIS 131 26 84% (77–90%) 81% (61–93%)

Subjects 2–12 years

LRTD 274 135 80% (74–84%) 83% (76–89%)

ASTHMA/RAD 139 232 98% (94–100%) 88% (83–91%)

CROUP 53 354 87% (75–95%) 83% (79–87%)

PNEUMONIA 54 349 85% (73–93%) 80% (76–84%)

URTD 85 324 80% (70–88%) 77% (72–82%)
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There were a number of study limitations.
A number of sound files were not usable (27; 4.1%).

While the technology is appropriate for use in realistic
clinical and hospital settings with reasonable background
noise, there were practical issues with the unintentional
capture of coughs from other people. Awareness of this
issue will help ensure that cough-recording captures
only the intended subject’s coughs.
In this trial, the algorithm was compared to clinician de-

rived diagnoses. Although the latter is considered a
non-reference standard test, it reflects existing best clinical
practice. We sought to improve clinical diagnostic accuracy
by requiring consensus agreement from an expert panel
using strict disease definitions. However 30% of cases re-
quired partial adjudication by a third clinician to attain ma-
jority decision. In studies with significant variance, it has
been shown that there will generally be little incremental
benefit to using more than three assessors [39].
The lack of an objective reference standard presents a

challenge in the evaluation of new diagnostic tests. In
RAD there is subjectivity in the interpretation of bron-
chodilator response unless objective lung function meas-
urement techniques are used [40]. These techniques are
not feasible in young children at the point of care. The
differentiation of bronchiolitis and RAD in children
under age 2 years is dependent on bronchodilator re-
sponse. If a bronchodilator test is not administered there
may be diagnostic classification errors reflecting
age-related variability in airway maturation and bron-
chodilator responsiveness. The diagnosis of pneumonia
relies on appropriate training and resources and is influ-
enced by geographical and community factors [14, 41].
Interpretation of chest radiographs has shown poor
inter-rater agreement for pneumonia [13, 42–44].
Care should be taken when assessing the generalisabil-

ity of these results to different populations. The symp-
toms entered into the algorithm are reliant on subjective
parent reports. Symptom duration (time from the first
symptom to medical care attendance) may vary in differ-
ent populations. It is anticipated that this may be greater
in resource-poor and remote areas, and lesser where
there is easy access to health care. Telemedicine has the
opportunity to reduce these times by improving medical
access to isolated communities.
Children under 24months were not able to cooperate

with providing voluntary coughs. This limited the collec-
tion of cough data in this group to subjects with spontan-
eous coughing from LRTD and affected numbers for pure
upper airway disease. The NPA for bronchiolitis was af-
fected by the small numbers of children without signifi-
cant LRTD in the cohort, resulting in a wider 95% CI. The
PPA, however, remained robust. There were also smaller
numbers with pneumonia in this age group; however, the
PPA and NPA were maintained with a wide CI for PPA.

Promising PPA and NPA results were demonstrated when
examining test agreement in children under 2 years only,
however larger studies in children under 24months are
required to determine the utility of the algorithm to youn-
ger infants/children in other populations and would be
beneficial given bronchiolitis and pneumonia are import-
ant diagnostic issues in this age group.
Our study population included both ambulatory care

and acutely unwell patients. Although we did not stratify
for disease severity, our study population was enrolled
predominantly from ED and inpatient wards suggesting
higher acuity disease than that encountered in ambulatory
care settings. The prevalence and severity of childhood re-
spiratory disorders may vary in different populations.

Conclusion
We have demonstrated that automated cough analysis
delivers good diagnostic accuracy in detecting common
childhood respiratory diseases including pneumonia,
RAD, croup, bronchiolitis, upper and lower respiratory
tract disorders. The technology can be installed onto
ubiquitous devices (smartphones), agrees with existing
standard-of-care clinical diagnosis and provides a
point-of-care diagnosis without the need for clinical
examination, supplemental investigations, or broncho-
dilator testing. It can be used as a diagnostic aid for
childhood respiratory disorders. Its use in different set-
tings such as hospitals, ambulatory care, community and
telehealth deserves evaluation. Further work will assist
in delineating its utility in these areas.
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