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Abstract—Spoken digit recognition finds numerous 
applications in digital technologies. Various feature 
engineering and classification strategies have been proposed 
for this purpose. This work explores the use of convolutional 
neural network (CNN) for spoken digit recognition. CNN is 
originally an image classifier and time-frequency 
representation of the spoken digit is used in this work to get 
an image-like representation. In particular, wavelet 
transform is used in forming the time-frequency 
representation as it provides better frequency localization 
for low frequency signals such as speech. The time-frequency 
representation is resized to a common dimension using 
bicubic interpolation and the resulting image-like 
representation, referred as scalogram, is used for 
recognizing spoken digits using CNN. In addition, late fusion 
is employed to combine the learning from scalogram 
representation and conventional time-frequency 
representations. The proposed approach is evaluated on a 
dataset containing 56,290 segments belonging to ten spoken 
digits, non-digits comprised of various other spoken words, 
and background noise. An overall validation and test error 
of 2.85% and 2.84% is achieved using the proposed method, 
outperforming various conventional methods. 

Keywords—bicubic interpolation, convolutional neural 
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I. INTRODUCTION 

Handwritten digit recognition has received significant 
attention in the past decade. The availability of the MNIST 
dataset, a large public dataset of handwritten digits with a 
training set of 60,000 samples and a test set of 10,000 
samples, provided an avenue for advancements in deep 
learning, a machine learning technique shown to perform 
particularly well on large datasets. 

Similar to handwritten digit recognition, spoken digit 
recognition has various applications such as audio content 
analysis and retrieval, credit card number entry, voice 
dialing, and data entry [1, 2]. However, spoken digit 
recognition has received relatively less attention. Some 
related works in spoken digit recognition can be found in 
[3-5]. The TIDIGITS dataset is utilized in [3] which 
contains 2,412 training utterances and 1,144 test 
utterances. The OGI Multilanguage Corpus is utilized in 
[4] with 826 samples for training and 454 samples for 
testing. Their method utilizes mel-frequency cepstral 
coefficients (MFCC) as features, feature dimension 
reduction using principal component analysis (PCA), and 
classification using support vector machine (SVM). 

In summary, a number of related works on spoken digit 
recognition utilize small datasets with conventional feature 
extraction and classification methods. Models trained on 
small datasets can be prone to overfitting and have poor 

generalization. In addition, most of these feature 
extraction, feature selection, and classification techniques 
have been superseded by deep learning techniques in 
recent times. One of the most comprehensive and recent 
related work that could be found is on the AudioMNIST 
dataset where deep learning techniques are utilized on a 
dataset of 30,000 audio digit samples [5]. This dataset, 
however, does not contain non-digit audio samples which 
is important in a realistic setting. 

Convolutional neural network (CNN) is a deep learning 
technique for image classification. It has produced 
encouraging results in image classification tasks [6]. The 
robustness of CNN has seen its extension to non-image 
classification tasks, including audio signal classification 
where CNN outperformed conventional feature extraction 
and classification techniques [7, 8].  

This work studies the use of CNN in spoken digit 
recognition. Being an image classifier, a key challenge is 
to find an appropriate image-like representation of the 
spoken digit signals. Various time-frequency 
representations of audio signals have been studied for use 
with CNN. The conventional time-frequency 
representation, the spectrogram, is probably the most 
common and has been used in spoken digit recognition [5]. 
Another common approach is the use of frequency domain 
filterbanks. Two commonly used filters are moving 
average filters and mel-filters, as used in the computation 
of MFCCs. The resulting time-frequency representations 
are referred as smoothed-spectrogram and mel-
spectrogram, respectively. These representations have 
shown to be useful in speech and acoustic event 
classification [7-9].  

In this work, the spectrogram, smoothed-spectrogram 
and mel-spectrogram form the baseline methods. In 
addition, this work investigates the formation of time-
frequency representation using wavelet transform. Wavelet 
transform offers better frequency localization in the lower 
frequency range making it more suitable for speech 
classification tasks compared to conventional techniques. 
Furthermore, different time-frequency representations 
reveal spectral information at different frequencies. 
Combining the learning from these representations may 
help improve the classification performance. In this work, 
late fusion is utilized as a way to make a more informed 
prediction. 

The proposed approach is evaluated on a 
comprehensive dataset. While it is important for an 
automated spoken digit recognition system to be able to 
accurately detect spoken digits, it is also important to reject 
non-digits and other background noise. The audio dataset 
used in this work utilizes non-digit speech files and 



background noise, including complete silence, in addition 
to the spoken digit files. This makes it a very realistic and 
challenging dataset. 

The rest of the paper is structured as follows. An 
overview of the dataset used in this work is given in 
Section II along with the method in time-frequency image 
formation and classification. The experimental results are 
presented in Section III and discussion and conclusion in 
Section IV. 

II. METHOD 

The dataset used in this work is described first 
followed by the technique used in the formation of wavelet 
scalogram, the CNN architecture, and late fusion. 

A. Dataset 

The Speech Commands dataset [10] is utilized in this 
work. The overall dataset has 38,908 spoken digit 
segments (0-9) and 66,921 non-digits segments (belonging 
to 25 classes), all of 1 second duration. In total, there are 
105,829 utterances of 35 words from 2,618 speakers. In 
addition, there are 6 background sound files which vary in 
duration from 60s to 95s. 

In this work, all the spoken digit segments available in 
the dataset are used together with about 20% of the non-
digit segments (13,382), referred here as the unknown 
class. The validation and test data from digit and non-digit 
segments is determined as per the information provided 
with the dataset. Also, 4,000 segments of duration 1 
second are taken from the background files. The volume of 
the background segments is rescaled from silent to loud 
and 80% are used for training, 10% for validation, and 
10% for test.  

The final dataset, therefore, has 45,013 training 
samples, 5,363 validation samples, and 5,914 test samples, 
a total of 56,290 samples. The distribution of the training, 
validation, and test data is provided in Fig. 1. 

B. Wavelet Scalogram 

The continuous wavelet transform for the time-domain 
audio signal 𝑟ሺ𝑡ሻ at scale 𝑠 and position 𝑢 is computed as 
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where   is the mother wavelet [11]. The analytic 
wavelets [12] investigated in this work are Morlet wavelet, 
Morse wavelet, and bump wavelet. 

The absolute value of the complex wavelet transform 
values is computed and the time-frequency representation 
is resized to a dimension of 64×64 which forms the input 
to the CNN. Resizing is carried out using interpolation, a 
commonly used technique in digital image processing. 
While various interpolation kernels are available for this 
purpose, bicubic interpolation has shown to be quite robust 
in time-frequency image resizing [13]. The interpolated 
surface using bicubic interpolation is given as 
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Fig. 1. Distribution of training, validation, and test data. 

 

which requires the computation of 16 coefficients 𝑎௜௝. The 
interpolation can be computed by applying a convolution 
using the following kernel in both dimensions [14] 
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A plot of time-domain signal for the spoken digit zero 
and its spectrogram and scalogram representations are 
given in Fig. 3. 

C. Convolutional Neural Network 

An overview of the CNN architecture used in this work 
is provided in Fig. 2 [9]. The network consists of five 
convolution layers. The filter size in each convolution 
layer is 3×3 with 12 filters in the first convolution layer, 24 
filters in the second convolution layer, and 48 in the 
remaining three layers. Each convolutional layer is 
followed by a batch normalization layer [15] and rectified 
linear unit (ReLU) [16]. The inclusion of the batch 
normalization layer, in particular, was seen to improve the 
classification results. A max pooling layer [17] of size 3×3 
and stride 2×2 is included after the ReLU layers, except 
the fourth. The final pooling layer is followed by a fully 
connected layer, softmax layer [18], and classification 
layer.  

Adaptive moment estimation [19] is used for training 
the network with an initial learn rate of 0.0003, L2 
regularization of 0.05, mini batch size of 128, and a 
maximum of 25 epochs. These parameters were optimized 
based on the training and validation performance. 

D. Late Fusion 

In addition to wavelet scalogram, spectrogram, 
smoothed-spectrogram, and mel-spectrogram time-
frequency representations are also experimented with. 
These representations utilize different center frequencies 
and bandwidth and, therefore, may capture slightly 
different spectral information in the signal. Combining 
information from these representations may help improve 
the classification performance. In this work, late fusion is 
employed for this purpose whereby the output scores of the  
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Fig. 2.  An overview of the CNN architecture used in this work. 

 

 
 

 
 

 

Fig. 3. (a) Time-domain signal for the spoken word “zero” and its time-
frequency representations, (b) spectrogram representation using short-
time Fourier transform and (c) scalogram representation using wavelet 
transform (bump wavelet). 

 

best performing representations are averaged before 
predicting the class label. 

III. EXPERIMENTAL EVALUATION 

The performance of the scalogram-CNN approach is 
evaluated against the spectrogram, smoothed-spectrogram, 
and  mel-spectrogram  representations,   the  computational 
details of which can be found in [8, 9]. The target time-
frequency representation size in all cases is 64×64. 

TABLE I.  OVERALL CLASSIFICATION ERROR FOR SPOKEN DIGIT, 
NON-DIGIT, AND BACKGROUND NOISE RECOGNITION USING DIFFERENT 

TIME-FREQUENCY REPRESENTATIONS OF SIZE 64×64 AND CNN. 

Time-frequency representation 
Validation Error  
(%) 

Test Error  
(%)

Spectrogram 6.02 6.88 

Smoothed-spectrogram 4.16 4.23 

Mel-spectrogram 3.93 3.96 

Scalogram (Morlet) 3.90 3.84 

Scalogram (Morse) 3.86 3.60 

Scalogram (Bump) 3.52 3.52 

Late fusion of CNN output: 
smoothed-spectrogram +  
mel-spectrogram +  
scalogram (bump)

2.85 2.84 

 

The overall validation and test results in spoken digit, 
non-digit, and background noise recognition are given in 
Table I. A validation and test error of 6.02% and 6.88% is 
achieved using the conventional spectrogram image. The 
results improve with the use of smoothed-spectrogram and 
mel-spectrogram representations. With the smoothed 
spectrogram, the validation and test error improve to 
4.16% and 4.23%, respectively. Similarly, the validation 
and test error improve to 3.93% and 3.96% with the mel-
spectrogram representation.  

However, the best results using individual 
representations are achieved using the wavelet scalograms. 
While all three scalograms give reduction in the error rate 
compared to the baseline time-frequency representations, 
with a validation error of 3.52% and a test error of 3.52%, 
the best results are achieved using bump wavelet. The 
performance is further improved using late fusion. Here, 
the CNN output from the smoothed-spectrogram, mel-
spectrogram, and wavelet scalogram (bump) 
representations are considered as they reveal spectral 
information using different techniques. The outputs of 
these three methods are averaged before making the final 
prediction. Late fusion achieves a validation error of 
2.85% and a test error of 2.84%. 

The confusion matrix for the test results using the late 
fusion approach are given in Table II. Background sounds, 
silence and noise, is the best performing class with 0% 
error and the least number of misclassifications are into 
this class, only 0.22% misclassification from class five. All 
the spoken digits, except one, four, and nine, have an error



TABLE II.  CONFUSION MATRIX FOR TEST RESULTS USING LATE FUSION. 
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Zero 97.61   0.24   0.24 0.72   1.20  2.39 

One  95.24   0.25     1.25 3.26  4.76 

Two 0.71  97.41      0.24  1.65  2.59 

Three   1.48 97.28     0.25  0.99  2.72 

Four    0.25 95.00      4.75  5.00 

Five      97.75   0.22  1.80 0.22 2.25 

Six       98.22  0.51 0.25 1.02  1.78 

Seven 0.25      0.99 98.03   0.74  1.97 

Eight   0.25   0.25   96.08 0.25 3.19  3.92 

Nine 0.25     0.98    95.59 3.19  4.41 

Unknown 0.07 0.50 0.14 0.28 0.71 0.50  0.07 0.21 0.21 97.30  2.70 

Background            100.00 0.00 

Overall 2.84 

TABLE III.  COMPARISON OF OUR SPOKEN DIGIT RECOGNITION METHOD AND RESULTS AGAINST SOME EARLIER WORKS. 

Method Dataset Classification Performance 

GTCC and HTM [3] 

Dataset: TIDIGITS Corpus  
Training samples = 2,412 
Test samples = 1,144 
(Spoken digit data only)

Error = 8.57% 

MFCC, PCA, and SVM [4] 

OGI Multilanguage Corpus  
Training samples = 826 
Test samples = 454 
(Spoken digit data only)

Error = 5.10% 

Spectrogram and CNN [5] 
AudioMNIST Dataset 
Training/test samples = 30,000 
(Spoken digit data only)

Cross-validation error = 4.18% 

This work: late fusion of CNN 
outputs from smoothed-
spectrogram, mel-spectrogram, 
and wavelet scalogram 

Speech Commands Dataset 
Training samples = 45,013 
Validation samples = 5,363 
Test samples = 5,914 
(Dataset has spoken digit data, non-digit data, and 
background silence and noise)

Validation error = 2.85% 
Test error = 2.84% 

 

rate of less than 4%. Spoken digit four has the highest error 
rate of 5.00%. Most misclassifications, 4.75%, are into the 
class unknown. While the error rate of class unknown is 
also less than 4%, the highest number of digit 
misclassifications is into this class. 

IV. DISCUSSION AND CONCLUSION 

Of the different time-frequency representations used to 
recognize digit, non-digit, and background signals using 
CNN in this work, the wavelet scalogram representations 
produced the smallest error. Wavelet transform offers good 
frequency localization in the lower frequency range. Since 
the audio signals considered here have more spectral 
information in the lower frequency range than the upper 
frequency range, as shown in Fig. 3, the wavelet scalogram 
representations help reveal more spectral information 
which could explain its superior performance. 

Furthermore, the bump wavelet offers wider variance in 
time and narrower variance in frequency which performed 
slightly better than the other two analytic wavelets 
considered in this work. Further analysis of the results 
shows that most of the misclassification is into the class 
unknown. This class comprises of several non-digit classes 
which could explain the high number of misclassifications 
into this class. 

Table III summarizes the performance of this work 
along with some related works. It can be deduced that the 
strength of this work are the comprehensiveness of the 
dataset and the robustness of the classification 
performance, in particular the scalogram-CNN approach 
and late fusion. Also, the proposed method doesn’t require 
significant feature engineering, relying on CNNs ability to 
learn distinguishing characteristics directly from the time-
frequency representations. 
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