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Abstract—The standard 12-lead electrocardiogram 
(ECG) is widely used by cardiologists in diagnosing cardiac 
abnormalities. However, manual interpretation of ECG 
signals can be time consuming and dependent on the skills of 
the clinicians. In this work, an approach for detection of 
cardiac abnormalities using automatic analysis of 12-lead 
ECG is presented and validated on a comprehensive dataset 
with eight cardiac abnormalities and one normal sinus 
rhythm. The proposed approach uses the raw ECG signals 
as a direct input to a model comprised of convolutional 
neural network and bi-directional long short-term memory. 
The dataset includes subjects with multiple cardiac 
conditions to account for which a binary classification 
strategy is utilized, in particular, the one-against-all 
classification method. A weighted cross entropy loss function 
is used to compensate for the imbalance in the class sizes. 
While the ECG signals in the dataset are up to 60 seconds 
long, the proposed approach utilizes only the first 15 seconds 
of the signals as it was seen to produce comparable 
performance with lower computational costs. An average 
validation accuracy of 96.19%, F-score of 0.8026, and AUC 
of 0.9624 is achieved using the proposed method. 
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I. INTRODUCTION 

Cardiovascular diseases (CVDs) are the leading cause 
of death globally. It is estimated that 17.9 million people 
died from CVDs in 2016, accounting for 31% of all deaths 
[1]. In Australia, CVD was the underlying cause of death 
in 41,800 deaths in 2018 (26% of all deaths) and an 
associated cause of death in 70,600 deaths [2]. 

CVDs are a group of disorders of the heart and 
circulation. This includes various cardiac abnormalities 
such as cardiac arrhythmias. Early detection of cardiac 
abnormalities could help improve clinical outcome [3]. 
Electrocardiogram (ECG) is a non-invasive measure of the 
electrical activity of the heart using electrodes placed on 
the surface of the body. The standard 12-lead ECG is a 
widely used tool in the diagnosis of various cardiac 
abnormalities [4]. 

Manual interpretation of ECG is, however, time 
consuming and dependent on the training and skills of the 
personnel [5]. Automatic analysis of the ECG signal can 
assist the physicians in the diagnosis of cardiac 
abnormalities. As such, the use of signal processing and 
machine learning techniques in the detection of cardiac 
abnormalities has generated a lot of interest. 

Conventionally, this has been achieved using various 
signal processing, feature extraction, and feature selection

techniques. For example, studying the heart rate variability 
based on the R-R interval, analysis of the P, QRS, and T 
patterns [6], analyzing the power spectrum of the rhythms 
[7], and entropy-based measures [8]. However, more 
recently, these methods have been surpassed by deep 
learning methods. In particular, convolutional neural 
networks (CNN) which have shown to learn distinguishing 
ECG signal characteristics [9], sometimes without the need 
for any signal processing, feature extraction, and feature 
selection. 

In this work, the 12-lead ECG signals are used as a 
direct input to a one-dimensional convolutional neural 
network (1-D CNN) for detecting cardiac abnormalities, 
forgoing all preprocessing steps. Furthermore, long short-
term memory (LSTM) is an artificial recurrent neural 
network [10], a deep learning technique that is particularly 
suited to sequence and time series data classification. 
Bidirectional LSTM (BiLSTM) is an extension of the 
conventional LSTM that can learn from past and future 
states. In this work, a BiLSTM network is combined with a 
CNN for the classification of multi-channel ECG signals, 
as seen to be useful in [9]. This allows the network to learn 
the feature representations together with the temporal 
relationship between the features. 

The proposed approach is evaluated on a 
comprehensive dataset containing multiple cardiac 
abnormalities. In addition, a number of ECG recordings in 
the dataset contain multiple cardiac abnormalities. To 
address this multi-label classification problem, a binary 
classification strategy, in particular, the one-against-all 
classification method is explored whereby the classifier is 
trained to recognize one disease against all other diseases 
combined. The dataset also has an imbalance of class sizes 
which is accounted for using a weighted classification 
layer. 

The rest of the paper is organized as follows. The 
dataset used in this work is described in Section II along 
with the CNN-BiLSTM classification method and the 
performance evaluation metrics. The experimental results 
are presented in Section III and discussion and conclusion 
in Section IV. 

II. METHOD 

A. Dataset 

The dataset used in this work has 6,877 recordings of 
12-lead ECG signals with a sampling frequency of 500 Hz 
[11]. The recordings come from 11 hospitals and the 
duration of the recordings varies from 6 seconds to 60 
seconds. Moreover, 3,699 recordings are from male 
subjects and 3,178 from female subjects. 



TABLE I.  DISTRIBUTION OF THE DIFFERENT CARDIAC 
ABNORMALIATIES AND NORMAL SINUS RHYTHM IN THE DATASET. 

Label 
Number of Recordings with: 

Total Label 
Count One Label Two Labels 

Three 
Labels 

AF 976 242 3 1,221 

I-AVB 686 36 0 722 

LBBB 179 54 3 236 

Normal 918 0 0 918 

PAC 533 80 3 616 

PVC 607 93 0 700 

RBBB 1,533 321 3 1,857 

STD 784 82 3 869 

STE 185 32 3 220 

Total 6,401 940 18 7,359 

 

 

Each recording is marked either normal or one or more 
labels from eight cardiac abnormalities. The nine labels 
are: 

1. atrial fibrillation (AF),  

2. first-degree AV block (I-AVB),  

3. left bundle branch block (LBBB),  

4. normal sinus rhythm (Normal), 

5. premature atrial contractions (PAC),  

6. premature ventricular contractions (PVC),  

7. right bundle branch block (RBBB),  

8. ST depression (STD), and  

9. ST elevation (STE).  

As summarized in Table I, of the 6,877 recordings, 
6,401 recordings have only one label, 470 recordings have 
two labels, and 6 recordings have 3 labels. This gives a 
total of 7,359 labels. The distribution of the recordings is 
uneven with RBBB having the most number of 
occurrences at 1,857 and STE having the least number of 
occurrences at 220. 

An illustration of the first 2 seconds of a 12-lead ECG 
recording labeled as AF is shown in Fig. 1. More details on 
the dataset can be found in [12]. 

B. Deep Learning Model 

In this work, the 12 lead ECG signals are used as a 
direct input to a 1-D CNN which is followed by a BiLSTM 
layer. The durations of the ECG signals in the dataset vary 
considerably but the CNN requires input of fixed length. 
Some preliminary experiments showed that fixing the 
length of the signals to 15 seconds (7,500 sample points) 
achieved similar performance to fixing it to 60 seconds 
(30,000), the length of the longest duration signal. A 
significant advantage of using 15 second long signals over 
60 long signals is the reduced computational costs. 
Therefore, the length of all the signals was fixed at 15 
seconds using zero-padding and cropping. 

 
Fig. 1. Plot of the first 2 seconds of a 12-lead ECG signal labeled as 
atrial fibrillation. 

 

A total of 476 recordings have 2 or more labels making 
this a multi-label classification problem. This problem is 
solved in this work by transforming it into a binary 
classification task. In particular, a technique similar to the 
one-against-all classification method is used. In this 
approach, the classifier is trained to separate one class 
against all other classes combined, one at a time. This 
results in 9 different models with each model making a 
prediction for each class. 

An overview of the CNN architecture used in this work 
is provided in Fig. 2. The network has five convolutional 
layers and each convolutional layer is followed by a batch 
normalization layer [13] and rectified linear unit (ReLU) 
[14]. The filter size in the four convolutional layers is 
1×15, 1×15, 1×10, and 1×4, respectively, each with a 
stride of 1×3. The number of filters in each convolutional 
layer is 128. Each ReLU layer is followed by a max 
pooling layer [15] of size is 1×10, 1×10, 1×5 and 1×3, 
respectively, each with stride 1×2. The final pooling layer 
is followed by a flatten layer, a BiLSTM layer [16], ReLU 
layer, dropout layer [17], fully connected layer, and a 
softmax layer [18]. The dropout layer has a probability of 
0.2 and the number of hidden units in the BiLSTM layer is 
set to 200. 

The distribution of labels in the dataset is imbalanced. 
In this work, this is accounted for using a weighted cross 
entropy loss in the final layer as 
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where 𝑌  represents the prediction scores, 𝑇  the training 
targets, 𝑁  the number of observations, 𝐾  the number of 
classes, and 𝑐 the class weights.  

The CNN model was trained using adaptive moment 
estimation (Adam) [19] algorithm. Adam uses the moving 
average of the first and second moments of the gradients to 
adapt the learning rate which, for iteration 𝑡, is given as 

 
1 2

ˆ ˆ and ,
1 1

t t
t tt t

m v
m v

 
 

 
 (2) 



 

Fig. 2. An overview of the CNN-BiLSTM one-against-all classification architecture used in this work. 

 

respectively, where 𝛽ଵ  and 𝛽ଶ  are the algorithm 
hyperparameters. The weight 𝑤  of the model is then 
updated as 
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where 𝜂 is the step size and 𝜀 a small scalar. 

The initial learn rate of the algorithm was set to 0.003 
with a drop factor of 0.1 at a drop period of 10. The mini 
batch size was set to 128 and the training was stopped at 
20 epochs.  

C. Performance Metrics 

The classification performance of the proposed method 
is evaluated in 10-fold cross validation using the accuracy 
and F-score (or F1 score) as 

 ,
TP TN

Accuracy
TP FN TN FP




  
 (4) 

 
2

-
2

TP
F Score

TP FP FN


 
 (5) 

where TP is the number of true positives, FP is the 
number of false positives, TN is the number of true 
negatives, and FN is the number of false negatives. The 
area under the curve (AUC) of the receiver operating 
characteristics (ROC) curve is also used as an evaluation 
measure given as  

  1

0
AUC f x dx   (6) 

where 𝑓ሺ𝑥ሻ  is the ROC function curve. The AUC was 
computed using trapezoidal approximation. 

III. EXPERIMENTAL EVALUATION 

The 10-fold cross-validation results in detecting cardiac 
abnormalities using 12-lead ECG signals are given in 
Table II. The results are presented using two models, a 
CNN model and a CNN-BiLSTM model. The CNN model 
is similar to the proposed CNN-BiLSTM model illustrated 
in Fig. 2 but without the BiLSTM layer and associated 

layers. The input to both the models is exactly the same, 
raw 12-lead ECG signals of duration 15 seconds. 

With the CNN model, an average accuracy, F-score, 
and AUC of 95.75%, 0.7836, and 0.9477, respectively, is 
achieved in detecting normal sinus rhythm and eight 
cardiac abnormalities. Looking at the individual class 
performances, the highest accuracy of 99.21% is achieved 
in detecting LBBB and the highest F-score of 0.9329 and 
AUC of 0.9902 in detecting RBBB. With an accuracy of 
91.32%, F-score of 0.5004, and AUC of 0.8388, the lowest 
results are in detecting PAC. 

Similarly, with the CNN-BiLSTM model, an average 
accuracy, F-score, and AUC of 96.19%, 0.8026, and 
0.9624, respectively, is achieved. For the individual 
classes, the highest accuracy of 99.16% is once again 
achieved in detecting LBBB and the highest F-score of 
0.9390 and AUC of 0.9900 in detecting RBBB. PAC once 
again has the lowest detection accuracy of 92.92% and 
AUC of 0.8849 while the lowest F-score is for class STE 
at 0.5876. 

While the results using both the models show similar 
trend, the overall results using the CNN-BiLSTM model is 
slightly better than the CNN model. With the CNN-
BiLSTM model, there is a relative improvement of 0.46%, 
2.42%, and 1.55% in the accuracy, F-score, and AUC, 
respectively, over the results using the CNN model. 

IV. DISCUSSION AND CONCLUSION 

A method for detecting normal sinus rhythm and eight 
cardiac abnormalities using 12-lead ECG signals is 
presented in this paper. The proposed method uses deep 
learning to learn the distinguishing signal characteristics 
directly from the raw signal, without the need for any 
feature engineering, and uses the one-against-all strategy 
for multi-label classification. The classification results 
using a combined CNN-BiLSTM model are slightly better 
than using CNN on its own. 

The results using the proposed method are comparable 
to the validation results in [9], one of the best results 
achieved on this dataset. However, the method presented in 
this work has some advantages. The model input ECG 
signal has a duration of 15 seconds in this work compared 
to 144 seconds in [9] which is 9.6 times longer and, 
therefore, has higher computational costs. Also, a total of 



TABLE II.  10-FOLD CROSS-VALIDATION RESULTS IN DETECTING CARDIAC ABNORMALITIES USING CNN AND CNN-BILSTM MODELS. 

 CNN CNN-BiLSTM 

Type Accuracy (%) F-Score AUC Accuracy (%) F-Score AUC 

AF 96.68 0.9087 0.9796 97.00 0.9169 0.9852 

I-AVB 97.24 0.8704 0.9786 97.50 0.8812 0.9833 

LBBB 99.21 0.8875 0.9680 99.16 0.8807 0.9815 

Normal 93.11 0.7644 0.9584 94.29 0.7986 0.9699 

PAC 91.32 0.5004 0.8388 92.92 0.5931 0.8849 

PVC 95.77 0.7849 0.9339 96.22 0.8119 0.9572 

RBBB 96.31 0.9329 0.9902 96.64 0.9390 0.9900 

STD 94.75 0.8004 0.9599 95.25 0.8141 0.9648 

STE 97.34 0.6030 0.9215 96.71 0.5876 0.9445 

Average 95.75 0.7836 0.9477 96.19 0.8026 0.9624 

 

 

10 convolutional layers and 5 pooling layers are used in [9] 
compared to only 4 convolutional and pooling layers in 
this work. This again reduces the computational costs of 
the model in this work. This work, however, utilizes a 
binary classification strategy for the multi-label 
classification problem whereas they utilize a sigmoid 
activation function instead of softmax. 
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