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Abstract 

Background and Objective: Pertussis (whooping cough), a 
respiratory tract infection, is a significant cause of morbidity 
and mortality in children. The classic presentation of pertussis 
includes paroxysmal coughs followed by a high-pitched intake 
of air that sounds like a whoop. Although these respiratory 
sounds can be useful in making a diagnosis in clinical practice, 
the distinction of these sounds by humans can be subjective. 
This work aims to objectively analyze these respiratory sounds 
using signal processing and deep learning techniques to detect 
pertussis in the pediatric population. 

Methods: Various time-frequency representations of the 
respiratory sound signals are formed and used as a direct input 
to convolutional neural networks, without the need for feature 
engineering. In particular, we consider the mel-spectrogram, 
wavelet scalogram, and cochleagram representations which 
reveal spectral characteristics at different frequencies. The 
method is evaluated on a dataset of 42 recordings, containing 
542 respiratory sound events, from children with pertussis and 
non-pertussis. We use data augmentation to prevent model 
overfitting on the relatively small dataset and late fusion to 
combine the learning from the different time-frequency 
representations for more informed predictions.  

Results: The proposed method achieves an accuracy of 
90.48% (AUC=0.9501) in distinguishing pertussis subjects 
from non-pertussis subjects, outperforming several baseline 
techniques.  

Conclusion: Our results suggest that detecting pertussis 
using automated respiratory sound analysis is feasible. It could 
potentially be implemented as a non-invasive screening tool, 
for example, in smartphones, to increase the diagnostic utility 
for this disease which may be used by parents/carers in the 
community. 
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1. Introduction 

Pertussis, commonly known as whooping cough, is a 
respiratory tract infection caused by Bordetella pertussis 
coccobacillus. It spreads by air droplets and is highly 
contagious [18]. The number of pertussis cases has decreased 
since the development of a vaccine. However, neither 
immunization nor previous infection provide lifelong 

immunity to the disease [2]. There is a resurgence of pertussis 
infections which is attributed to waning immunity and bacteria 
mutation [23, 34]. While pertussis affects all age groups, it is a 
significant cause of morbidity and mortality in young children 
[35], especially in developing countries, where access to 
timely diagnoses may not be available. 

Following an incubation period, the typical progression of 
pertussis is in three distinct stages: catarrhal phase, 
paroxysmal phase, and convalescent phase [18]. The catarrhal 
phase characteristics are similar to other upper respiratory 
tract infections. This is followed by the paroxysmal phase. 
Cough is one of the symptoms of pertussis and it increases in 
severity at this stage, developing into a paroxysmal or hacking 
cough followed by a high-pitched intake of air that sounds like 
a whoop, hence the name whooping cough [35]. The residual 
cough can persist for weeks to months in the convalescent 
phase. In severe cases in infants it can lead to respiratory 
failure and death [20]. 

People with pertussis are infectious for weeks but, if given 
appropriate antibiotic treatment, the infectious period and 
spread is reduced and may also prevent complications [4]. 
Early treatment of pertussis is, therefore, crucial for managing 
this disease. We posit that the paroxysmal coughing and 
whooping sounds can be useful for screening pertussis, 
especially in the pediatric population which remains the most 
vulnerable age group. However, recognizing these respiratory 
sounds by parents/carers of the child can be unfeasible. In 
clinical practice, this is dependent on the skills and training of 
the clinicians. 

In this work, we aim to develop an objective computational 
method for detecting respiratory sound events associated with 
pertussis, that is, the hacking cough and whooping, for the 
pediatric population. If disseminated widely, for example, as a 
smartphone application, such an objective assessment tool 
could prove useful as a screening tool for parents/carers. It 
could also be useful in developing countries and remote 
communities which lack access to health facilities and 
clinicians. 

1.1 Related Work 

Detecting respiratory diseases using digital respiratory 
sounds, cough sounds, in particular, has generated interest 
recently such as in detecting childhood pneumonia [16], 
monitoring chronic obstructive pulmonary disease [9], and in 
detecting croup, which is common in children between the age 
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of 6 months to 6 years and produces a distinctive barking 
cough [30]. Various signal processing and machine learning 
techniques have been proposed for the analysis and detection 
of cough sounds. Being a relatively new area of research, a 
number of techniques are inspired by other audio classification 
tasks such as speech recognition. One such measure is mel-
frequency cepstral coefficients (MFCCs) [8]. MFCCs utilize 
mel-filters which are effective in revealing the perceptually 
significant characteristics of the speech spectrum in small time 
windows. Speech and cough share some similarities in the 
generation process and the physiology which could explain the 
widespread use and effectiveness of MFCCs in cough sound 
analysis tasks [10, 16, 27, 29, 30, 37]. 

It is a common practice to complement MFCCs with other 
techniques. In [10, 16, 29], various temporal and spectral 
analysis techniques are employed for this purpose. In addition, 
wavelet transformation is applied in [16] in analysis of cough 
sounds for detecting pneumonia. Wavelets are effective at the 
decomposition of non-stationary signals in both the time and 
frequency domains and, in [16], the focus is particularly on 
picking the crackle sounds in pneumonia coughs. 

Furthermore, the spectral information contained in cough 
sounds is more dominant in low frequencies than in high 
frequencies. The human auditory model offers a higher 
resolution for low frequencies than for high frequencies. In 
[30], this frequency selectivity property of the human cochlea 
is modeled using a gammatone filter to differentiate the 
barking cough sound of croup subjects from the cough sound 
of other respiratory diseases. A similar approach is also taken 
in [37]. 

Audio sound analysis, including cough sound analysis, is 
typically carried out in small time windows at different 
frequency localizations. These result in a high dimensional 
data which conventional classification methods may be unable 
to handle. A common approach is to reduce this data size into 
a smaller feature set using statistical methods. With MFCCs, 
for example, the mean and standard deviation of the 
coefficients have been used [30]. Similarly, the slope of the 
wavelet coefficients is used as wavelet feature (WF) in [16]. In 
[30], the time-frequency representation is formed using 
gammatone filters, referred to as gammatone-spectrogram or 
cochleagram, is divided into blocks and the second and third 
central moments are used as the cochleagram image features 
(CIF). In [16, 29, 30], feature extraction follows feature 
selection to further reduce the feature dimension and select the 
most dominant features for classification. 

The use of conventional feature engineering techniques 
inevitably leads to loss of some information which causes poor 
classification performance and misdetection of respiratory 
diseases. More recently, these methods have been superseded 
by deep learning techniques due to their superior classification 
results. One such deep learning technique is convolutional 
neural network (CNN) [17]. CNN is originally an image 
classification technique which has the ability to learn 
distinguishing image characteristics directly from the raw 
image through various mathematical operations. In audio 
signal classification tasks, this arrangement is typically 
realized by transforming the signal into an image-like 

 

Fig. 1:  An overview of the proposed approach in detecting 
pertussis using respiratory sound events and CNN. 

 

representation [21, 32]. Time-frequency representation of 
audio signals is the most common approach for this purpose, 
such as the conventional spectrogram representation formed 
using short-time Fourier transform (STFT). 

1.2 Audio Data and CNN for Pertussis Detection 

An overview of the proposed approach is given in Fig. 1. 
We take inspiration from conventional feature extraction 
techniques and the state of the art CNN for detecting pertussis 
using respiratory sounds. In particular, we represent the one-
dimensional respiratory sound signals as two-dimensional 
time-frequency representations for classification using CNN. 
Our approach in forming the time-frequency representations is 
based on the feature extraction techniques from [16, 29, 30]. 
In particular, we use mel-filters, as used in computing 
MFCCs, to form mel-spectrogram; wavelet transform, as used 
in computing WF, to form wavelet scalogram, and 
gammatone filters, as used in computing CIF, to form 
cochleagram.  

Furthermore, different time-frequency representations 
reveal spectral characteristics at different frequencies. In 
conventional machine learning, this information is combined, 
for example, using feature vector concatenation, to improve 
the classification performance. With CNN this can be 
achieved using late fusion whereby the outputs of CNN 
models trained on different representations are combined. This 
can be realized either by averaging the output scores [39] or 
using the output scores to train a secondary classifier [41]. In 
this work, we use late fusion to combine the CNN learning 
from different time-frequency representations, aiming to make 
more accurate predictions. 

The proposed approach is evaluated on a dataset of 
respiratory sounds from children with suspected or confirmed 
pertussis and other respiratory diseases. Collecting 
physiological data is time consuming, expensive, and may 
require patient cooperation, which can be difficult with 
children. However, a rapid rise in the use of digital technology 
has prompted researchers to collect self-reported data from the 
public. In a similar study [29], researchers composed a dataset 
of respiratory diseases using online sources while researchers 
at Microsoft used web search queries of users with self-
identified conditions [36]. More recently, researchers at the 
University of Cambridge collected COVID-19 related sounds 
of users with self-reported disease status through a website 
and a smartphone application. In this work, we use a dataset of 
respiratory sounds collated from the YouTube online video 
sharing platform and reviewed by a clinician. 
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Table 1: An overview of the dataset used in this work. 

Disease 
Group 

Number of 
Recordings 

Total Recording 
Duration (sec) 

Age 
Known

Age Range (Mean) 
(Months)

Gender Known 
(M:F)

Total Number of 
Coughs (Range) 

Subjects with Whoops 
(Total Whoops)

Pertussis 21 1261.23 15 1–84 (25.27±24.35) 18 (8:10) 545 (3–100) 16 (110) 

Asthma 2 

1674.62 7 5–36 (18.36±14.18) 16 (11:5) 257 (2-47) 0 (0) 
Bronchiolitis 6 

Croup 12 

Pneumonia 1 

 
In total, the dataset contains 42 recordings, each with 

multiple respiratory sounds. This makes it a relatively small 
dataset and CNN models trained on small datasets can be 
prone to overfitting. One method to reduce overfitting is 
mixup [40] which augments the dataset, mixing the features of 
different classes. It is a simple yet effective method with very 
low computational costs. In this work, we extend the mixup 
data augmentation technique to time-frequency representations 
of respiratory sounds. 

The rest of the paper is organized as follows. An overview 
of the dataset and the proposed method is given in Section 2. 
The experimental setup and results are provided in Section 3 
and discussion of the results and conclusions are in Section 4. 

2 Methods 

2.1 Dataset 

The dataset used in this work was collated from YouTube. 
Various search terms were used to identify respiratory sound 
recordings from children with the following respiratory 
conditions: pertussis, asthma, bronchiolitis, croup, and 
pneumonia. The diagnosis of pertussis and other respiratory 
conditions in the videos was attributed by the information 
provided in the title and/or description of the videos and later 
checked by a clinician to assess the plausibility of the sounds 
and the reported diagnosis. 

The final dataset contained a total of 42 recordings, each 
with multiple respiratory sound events. The breakdown of 
disease classes for the recordings in the dataset is as follows: 
21 pertussis, 2 asthma, 6 bronchiolitis, 12 croup, and 1 
pneumonia (in total, 21 non-pertussis). The age and gender of 
the subjects were determined based on the information 
provided in the title and description of the videos and, if 
needed, by watching the video. While all the subjects were 
children, the age and gender could not be determined in some 
cases. A summary of the respiratory diseases, demographics, 
and breakdown of respiratory sound events in the dataset is 
provided in Table 1. 

All subjects had cough as a symptom with the average 
number of coughs in the pertussis group more than twice in 
the non-pertussis group despite the average recording duration 
for pertussis subjects being lower than for non-pertussis 
subjects. This could be attributed to the nature of the 
paroxysmal cough in pertussis – persistent hacking cough 
followed by a whoop. However, whooping is not always 
present in pertussis subjects. In this dataset, 16 of the 21 
pertussis subjects were determined to have whoops with a total 
of 110 whooping episodes. 

 
Fig. 2:  Plot of three hacking cough signals followed by an 
inspiratory whoop from a pertussis subject. 

An illustration of hacking cough signals followed by a 
whoop from a pertussis subject is given in Fig. 2. In this case, 
the subject has three rapid bursts of cough over a period of 
about 1 second, marked as 1-3. Looking at the amplitude of 
the signals, we observe that bulk of the air is expelled from the 
lungs of the subject in the first two coughs. The subject may 
be almost out of air at the time of the third cough which 
explains the significantly lower amplitude of the cough signal. 
There is an urgent need to breathe after that with the subject 
having a long gasp for air sounding like a whoop, marked as 4. 

Most, if not all, the recordings are believed to be captured 
using smartphone microphones. This means the recordings are 
likely coming from different manufacturers and models of 
smartphones making this a challenging and diverse data. Of 
the 42 recordings, 23 are recorded in a home environment, 2 in 
hospital, 2 in vehicle, 5 in an unknown indoor environment 
while the location of 10 recordings is unknown. The 
recordings include various background noises and sound 
events such as people talking, TV or music playing, dog 
barking, noise from other household appliances, etc. The 
signal-to-noise ratio (SNR) in the presence of background 
noise is also diverse, estimated to be in the range of 16 dB to 
44 dB.  

The audio data were retrieved in the MP3 coding format. 
The sampling frequency of the original recording is not known 
but the retrieved audio files are sampled at 44.1 kHz. 
Inspecting the spectrogram of the audio files revealed that 
some recordings did not have any spectral information above 8 
kHz. Hence, spectral analysis was limited to this frequency.
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Fig. 3:  Plot of (a) cough sound signal, (b) mel-spectrogram representation, (c) wavelet scalogram representation, and (d) 

cochleagram representation of this cough signal. 
 
The noise source generally varies from one signal to another 
and most noise types were present in the targeted 0-8 kHz 
frequency range, therefore, no specific noise filtering was 
performed. 

2.2 Time-Frequency Representations 

In the proposed method, we use time-frequency 
representations of respiratory signals as a direct input to the 
CNN. Three time-frequency representations are considered for 
this purpose: mel-spectrogram, wavelet scalogram, and 
cochleagram. In this work, a target time-frequency image size 
of 64×64 is used.  

In forming the mel-spectrogram, STFT is computed by 
dividing the respiratory signal into 64 frames with a 50% 
overlap and computing the Fourier transform as 
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where 𝑁 is the length of the frame, 𝑥ሺ𝑛ሻ is the framed 
respiratory signal, and 𝑋ሺ𝑘ሻ is the 𝑘௧௛ harmonic frequency. 
The log mel-filter bank energies are then computed as  
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where 𝑉ሺ𝑚ሻ is the normalized filter response of the mel-
filters, triangular filter banks equally spaced on the mel-scale 
[26].  The number of mel-filters 𝑀 is set to 64 and this process 
is repeated for each of the 64 frames resulting in a 64×64 mel-
spectrogram. 

To form the wavelet scalogram, continuous wavelet 
transform is applied to the respiratory signal 𝑥ሺ𝑡ሻ at scale 𝑒 ൐
0 and position ℎ as  
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where  is the mother wavelet (complex conjugate) [19]. The 

scale parameter is analogous to frequency in Fourier transform 
and is chosen such that the signal is decomposed into 64 

components. The decomposed signal at each scale is divided 
into 64 windows, the absolute values of which are summed to 
determine the energy in each window and 𝑙𝑜𝑔 of the energy 
values gives the wavelet scalogram. 

The frequency components of the cochleagram are based on 
the human auditory filters, modeled by a gammatone filter, the 
impulse response of which is given as  
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where 𝑎 is the amplitude, 𝑡 is the time, 𝑗 is the filter order, 𝑓௖ 
is the center frequency of the filter, 𝑏 is the bandwidth of the 
filter, and  is the phase factor [28]. The relationship between 
the center frequency and the bandwidth of the filters in human 
hearing is described using the equivalent rectangular 
bandwidth (ERB) [28]. The implementation of the ERB filter 
model given in [11] was exploited. In forming the 
cochleagram, the respiratory signal was filtered using 64 
gammatone filters, followed by the windowing process similar 
to wavelet scalogram. 

Illustrations of a cough signal and its mel-spectrogram, 
scalogram, and cochleagram representations are given in Fig. 
3 with a frequency range of 0-8 kHz. 

2.3 CNN 

2.3.1  CNN Architecture 

The architecture of the 2-D CNN is similar to the one 
presented in [31]. The input layer has a size of 64×64. The 
time-frequency representations are normalized using zero 
mean and unit standard deviation in the input layer to remove 
the effect of subject variability. The classification network 
consists of five convolutional layers, each with a 3×3 filter 
size. The number of filters in the first convolutional layer is 
𝑁ி ൌ 48, with 2𝑁ி filters in the second layer, and 4𝑁ி filters 
in the remaining three layers. 

Each convolutional layer is followed by a batch 
normalization layer [12] and rectified linear unit (ReLU) [24]. 
These are followed by a max pooling layer [14] in all the 
layers, except for the fourth layer. Each max pooling layer has 
a pool size of 3×3 and a stride of 2×2. The final max pooling 
layer is followed by a dropout layer [33] with probability 0.2, 
a fully connected layer, and a softmax layer [3]. 

The number of pertussis labels in the training dataset is 
greater than that of non-pertussis labels. To account for this 
imbalance, weighted cross entropy loss was used in the 
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classification layer. Given the prediction scores 𝑌 and training 
targets 𝑇, the weighted cross entropy loss is computed as 
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where 𝑆 is the number of observations, 𝐾 is the number of 
classes, and 𝑐 are the class weights. The final network, 
therefore, has a total of 24 layers. 

The network was trained using adaptive moment estimation 
(Adam) [15] which uses the estimates of the first and second 
moments of the gradients to compute adaptive learning rate for 
the parameters. The first and second moment estimators for 
training iteration 𝑡 are computed as 
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respectively, where 𝛽ଵ and 𝛽ଶ are the hyperparameters of the 
algorithm. The model weight 𝑤 is then updated as 
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where 𝜂 is the step size and 𝜀 is a small scalar. 

The training parameters are set using a simple grid search. 
The initial learn rate is set to 0.003, mini batch size is 32, and 
the maximum number of epochs is 30. In addition, we use a 
learn rate drop factor of 0.1, learn rate drop period of 10, and 
L2 regularization of 0.2. The model was implemented in 
MATLAB R2020b and trained on AWS using a single 
NVIDIA V100 Tensor Core GPU. The training stops after the 
maximum number of epochs is reached. 

2.3.2 Data Augmentation 

As our training dataset is relatively small, we perform data 
augmentation using a modified version of mixup to prevent 
overfitting. Given a training dataset of time-frequency 
representations 𝐷, for every representation 𝐼௥ belonging to 
class 𝑦௥, additional representation 𝐼ሚ௥ is created by mixing 𝐼௥ 
with a randomly selected representation 𝐼௦ from another class 
𝑦௦, as 
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where, 𝜆 ൌ 0.5, 𝐼௥ ് 𝐼௦, and 𝑦௥ ് 𝑦௦. We used this process to 
create a mixup time-frequency representation for each time-
frequency image in 𝐷. The original dataset 𝐷 and the mixup 
dataset 𝐷෩ are combined to train the CNN model. 

2.3.3 Late Fusion 

Furthermore, the three time-frequency representations 
reveal spectral characteristics at slightly different center 
frequencies and bandwidths; refer to Fig. 3 (b)-(d). As such, a 

 

Fig. 4:  Late fusion by pooling the CNN outputs for a 
combined prediction using SVM. 
 

 

CNN trained on these time-frequency representations would 
learn unique information and combining the learnings from 
the CNNs has the potential to improve the classification 
performance. In this work, we use a late fusion approach for 
this purpose, as illustrated in Fig. 4.  

Each of the three CNNs, trained on mel-spectrogram, 
wavelet scalogram, and cochleagram, outputs a probability 
score 𝑝ଵ, 𝑝ଶ, and 𝑝ଷ, respectively, for each validation sample. 
These probability scores are concatenated into a feature vector 
ሾ𝑝ଵ, 𝑝ଶ, 𝑝ଷሿ. These feature vectors are used to train a secondary 
classifier, in this case a support vector machine (SVM) [6] 
with radial basis function (RBF) kernel. The same training and 
validation procedure, as with CNN, is repeated to make the 
final prediction for each validation sample. 

2.4 Evaluation Metrics 

Performance of the methods is evaluated using sensitivity 
(Sen), specificity (Spe), accuracy (Acc), and the area under the 
curve (AUC) of the receiver operating characteristic (ROC) 
curve given as follows: 
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where TP, FP, TN, and FN are the number of true positives, 
false positives, true negatives, and false negatives, 
respectively, and 𝑓ሺ𝑥ሻ is the ROC function curve. We 
computed the AUC using trapezoidal approximation. 

In similar to [30], the performance is evaluated at the cough 
and subject levels. At the cough level, the aim is to correctly 
predict the class of each cough as pertussis or non-pertussis 
using the posterior probability of the classification models. 
The 𝑢௧௛ cough from the 𝑣௧௛ subject/recording is classified as 
pertussis if the posterior probability is greater than or equal to 
𝑡ଵ, that is, 
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Table 2: Results using baseline methods. 

Feature Set Classifier 
Cough Classification Results Subject Classification Results 

Sen (%) Spe (%) Acc (%) AUC Sen (%) Spe (%) Acc (%) AUC 

MFCC LR 63.85 63.82 63.84 0.6659 85.71 80.95 83.33 0.7880 

NB 60.06 59.80 59.96 0.6422 71.43 66.67 69.05 0.6859 

SVM 69.97 69.85 69.93 0.7242 85.71 80.95 83.33 0.8787 
WF LR 56.85 56.78 56.83 0.5977 80.95 71.43 76.19 0.7800 

NB 65.89 63.32 64.94 0.6585 85.71 71.43 78.57 0.7029 

SVM 62.39 62.31 62.36 0.6525 85.71 80.95 83.33 0.8435 
CIF LR 60.06 59.80 59.96 0.6288 80.95 71.43 76.19 0.7789 

NB 60.93 60.80 60.89 0.6428 76.19 71.43 73.81 0.7721 

SVM 64.43 64.32 64.39 0.6588 85.71 80.95 83.33 0.8129 
MFCC + WT + CIF LR 60.06 59.80 59.96 0.6340 85.71 76.19 80.95 0.8061 

NB 63.56 63.32 63.47 0.6829 76.19 71.43 73.81 0.7120 

SVM 62.39 62.31 62.36 0.6703 90.48 80.95 85.71 0.8141 
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where 𝑢 ∈ ℤ: 𝑢 ∈ ሾ1, 𝑈௩ሿ, 𝑈௩ is the total number of coughs for 
the 𝑣௧௛ subject, 𝑣 ∈ ℤ: 𝑣 ∈ ሾ1, 𝑉ሿ, and 𝑉 is the total number of 
subjects. The optimal cut-off point on the ROC curve 𝑡ଵ is 
chosen at the intersection of cough level sensitivity and 
specificity.  

At the subject level, the classification of the coughs is used 
to determine if the recording belongs to a subject with 
pertussis or non-pertussis as 
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where 𝑞௩ ൌ 1

𝑈௩ൗ ∑ 𝐶௩௨
௎ೡ
௨ୀଵ  and the optimal cut-off point 𝑡ଶ is 

chosen at the intersection of subject level sensitivity and 
specificity. 

3 Experimental Evaluation 

3.1 Experimental Setup 

In this work, we use a stratified 7-fold cross-validation 
which we found to give a good compromise between the 
number of training and validation samples in each fold. As 
such, 3 pertussis and 3 non-pertussis recordings are used for 
validating the model and the remaining recordings are used for 
training the model, in each fold. The respiratory sounds from a 
recording/subject are present either in the training or 
validation dataset, but not in both. 

The number of respiratory sounds per recording varies from 
2 to 138. When using all the available respiratory sounds, the 
model naturally tends to fit to the recordings with more 
respiratory sounds. This means that even though the cough 
classification results improve, this does not necessarily 
translate to a better subject classification as the model may not 
be adequately learning the inter-subject variability. To address 
this, we varied the maximum number of respiratory sounds per 

subject to be used in training with a value of 20 yielding the 
best performance in subject classification. As such, the dataset 
used in all the experiments contains 343 respiratory sound 
events from pertussis subjects and 199 events from non-
pertussis subjects, a total of 542 events. 

We present the evaluation results in Section 3.2 and 3.3. 

3.2 Baseline Method and Results 

The baseline features experimented with in this work are 
mel-frequency cepstral coefficients (MFCC), wavelet features 
(WF), and cochleagram image features (CIF), and their 
combined feature set. To compute MFCCs, the respiratory 
signal is divided into frames of 1024 points with 50% overlap. 
After applying Fourier transform, 20 mel-filter bank energies 
are computed in each frame followed by discrete cosine 
transform [13] to obtain the MFCCs. The first and second 
derivatives of the coefficients are also computed [38]. The 
final 120 dimensional MFCC feature vector is the mean and 
standard deviation of the 20 coefficients and the derivatives 
across all frames. 

To compute WF [16], a time-scale representation or 
scalogram is formed, in similar to the procedure described in 
Section 2.2 but with an output size of 64×12. The final 768 
dimensional feature vector is the slope between the energy 
values in the 12 windows in each time axis. The cochleagram 
representation described in Section 2.2 is used to compute the 
CIF [30]. The cochleagram is divided into 8 blocks along the 
time and frequency axis, and second and third central 
moments are computed in each of the 64 blocks to form a 128 
dimensional feature vector. 

Following feature extraction, the significance of the features 
is determined using training data in each fold with one-way 
analysis of variance (ANOVA) and t-test. One-way ANOVA 
and t-test determine if there is a significant difference between 
the mean of the two groups, pertussis and non-pertussis. The 
significance of each feature dimension is given by the p-value 
in the range [0,1] where a p-value close to 0 indicates high 
significance and a p-value close to 1 indicates low 
significance. In similar to [1, 30], various p-value thresholds 
are applied in the range [0,1] and feature dimensions with
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Table 3: Results using the proposed method. 

Input Classifier 
Cough Classification Results Subject Classification Results 

Sen (%) Spe (%) Acc (%) AUC Sen (%) Spe (%) Acc (%) AUC 

Mel-Spectrogram CNN 72.30 71.86 72.14 0.7962 90.48 80.95 85.71 0.9172 

Scalogram CNN 72.01 71.86 71.96 0.7767 85.71 80.95 83.33 0.8741 

Cochleagram CNN 71.14 70.85 71.03 0.7705 90.48 80.95 85.71 0.8730 

Late Fusion SVM 73.18 72.86 73.06 0.7640 95.24 85.71 90.48 0.9501 

 
 
p-value below this threshold are used for training and 
validation. The baseline classifiers used in this work are 
logistic regression (LR) [7], Naïve Bayes (NB) [22], and SVM 
with RBF kernel, as seen to be popular in cough sound 
classification tasks [16, 30, 37]. 

Results for pertussis and non-pertussis classification at 
cough and subject level using the baseline methods are given 
in Table 2. While we experimented with both the feature 
selection methods and several p-value thresholds, only the best 
results are presented here. In general, the best baseline results 
for the cough and subject classifications are achieved by 
SVM. At the cough level, the best accuracy for a single feature 
set is in the range of 64.39% to 69.93% and the best AUC is in 
the range of 0.6585 to 0.7242. With a cough level accuracy of 
69.93% (AUC=0.7242) and a subject level accuracy of 
83.33% (AUC=0.8787), the best classification performance 
using single feature set is with MFCC and SVM. The 
combined feature set yields mixed performance. At the cough 
level, it could not improve on the MFCC-SVM results. The 
accuracy improves at subject level to 85.71% but with a lower 
AUC of 0.8141. 

3.3 Results Using Proposed Method 

The classification results for time-frequency image 
classification using CNN and late fusion are given in Table 3. 
Target time-frequency image size of 64×64 is used as higher 
dimensional images increased computational overheads but 
did not improve the classification results. In late fusion, the 
output of the individual CNNs trained on the three time-
frequency representations is combined for classification using 
SVM and evaluated in 7-fold cross validation. 

All three time-frequency representation classification using 
CNN achieve accuracy greater than 71% and AUC greater 
than 0.77 in cough classification. This is substantially higher 
than the results using a single baseline feature set or the 
combined MFCC+WF+CIF. With a sensitivity of 72.30%, 
specificity of 71.86%, accuracy of 72.14%, and AUC of 
0.7962, the best results in cough classification are achieved 
using mel-spectrogram-CNN, while the accuracy and AUC 
scores of cochleagrams and scalograms are close. Mel-
spectrograms also produce the best subject level classification 
results: sensitivity of 90.48%, specificity of 80.95%, accuracy 
of 85.71%, and AUC of 0.9172. The combination of 
cochleagram and CNN also achieves an accuracy of 85.71% 
for subject level classification but with a lower AUC. 

With late fusion, the cough level sensitivity, specificity, and 
accuracy improve to 73.18%, 72.86%, and 73.06%, 
respectively, but with a lower AUC of 0.7640. In addition, the 

subject classification results improve with a sensitivity of 
95.24%, specificity of 85.71%, accuracy of 90.48%, and AUC 
of 0.9501. These are the best overall results in detecting 
pertussis and non-pertussis subjects. Using the Wilson method 
[25], the 95% confidence interval for sensitivity is 77.33% to 
99.15% and for specificity 71.09% to 97.35%. In addition, the 
classification accuracy is 90% at SNR below 25 dB, 86.96% at 
SNR of 25 dB to 35 dB, and 100% over 35 dB which indicates 
better classification accuracy when the noise level is low, as 
can be expected. 

4 Discussion and Conclusions 

The dataset used in this work has been recorded in natural 
environments with SNR as low as 16 dB. The recordings are 
believed to be made using smartphones of different 
manufacturers and models and the training and validation 
procedure followed in this work is subject independent. All 
these increase the difficulty and complexity of the task. 
Despite these constraints, our method is empirically shown to 
achieve strong classification performance at the cough and 
particularly subject levels. In addition, while earlier works 
looked at the problem of respiratory sound-based pertussis 
detection using conventional feature engineering and machine 
learning methods [27, 29], our proposed time-frequency 
representations, CNN, and late fusion approach forgoes the 
need for feature engineering and outperforms several 
conventional methods. These demonstrate the robustness of 
the proposed approach against the diversity of recording 
environments, background noises, and recording devices, and 
against conventional classification methods. 

Our work has some limitations. Further analysis of our 
results shows that 3 out of the 4 misclassifications for the best 
classification model are in children aged 6 months or less. 
This could be because the lungs and airway muscles of 
children are in different developmental stages at different age 
groups. This may cause variations in the cough sound, 
especially in infancy [5]. Age group specific models may help 
overcome this problem, however, how exactly the sound is 
affected by age or the adequacy of specific cut-off point to 
establish age groups remain unclear. In addition, in this work 
we have only 42 subjects of which the age of only 22 subjects 
is known. The relatively small dataset makes this difficult. 
Furthermore, the non-pertussis group in the dataset is 
comprised of a number of different respiratory diseases of 
which pneumonia and asthma have only 1 and 2 recordings, 
respectively. Also, the dataset does not include other types of 
childhood respiratory diseases or comorbidities which would 
be present in complex cases. While our dataset is still larger 
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than those of [27, 29], the availability of an even larger and 
complex data with age-defined groups would help us develop 
more generalizable models. Moreover, Bordetella 
parapertussis causes a similar clinical picture to Bordetella 
pertussis but tends to be milder and of a shorter duration. 
However, we were not able to verify the diagnosis of pertussis 
using confirmed microbiology and relied on physician 
interpretation as the gold standard. We hope to collect 
clinically verified data in future prospective studies. 

Funding: This research did not receive any specific grant 
from funding agencies in the public, commercial, or not-for-
profit sectors. 
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