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Abstract—Sleep disorders affect millions of people worldwide. 
Polysomnography (PSG) is a sleep study that is commonly used 
to diagnose sleep disorders, such as using sleep staging. However, 
PSG can be labor intensive, time consuming, expensive, and may 
not be easily available. Sleep and wake cycles can cause variation 
in heart rate and respiration which can be estimated using 
electrocardiogram (ECG), available as wearable sensors. As 
such, this work studies the use of single-lead ECG for detecting 
sleep and wake stages, in particular, using the heart rate 
variability (HRV) and ECG-derived respiration (EDR) signals. 
Various temporal and spectral descriptors are extracted from the 
HRV and EDR signals for this purpose. Sequential backward 
feature selection is employed to select the discriminative features 
for classification using logistic regression. The proposed method 
is evaluated on a dataset of more than 85 hours of ECG 
recordings from 16 subjects in leave-one-subject-out cross-
validation. An accuracy of 75% (AUC=0.83) is achieved using the 
EDR features in classifying sleep and wake stages. This increased 
to an accuracy of 80% (AUC=0.88) when combined with HRV 
features. The proposed method demonstrates potential to be used 
for screening sleep disorders using ECG. 
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I. INTRODUCTION 

Approximately one-third of adults in the United States 
reported short sleep in 2017, an increase of about 15% since 
2004 [1]. Similarly, results of a 2016 Australian survey show 
that 33-45% of adults suffer from inadequate sleep and its 
daytime consequences [2]. Sleeping habits are intrinsically 
related to mental and physical health [3]. Lack of sleep is 
associated with decline in cognitive performance, motor 
vehicle accidents, poor quality of life, heightened 
socioeconomic burden, and various other mental and physical 
conditions [3]. Sleep disorders, such as insomnia and 
obstructive sleep apnea, are a common cause of sleep 
deficiency [2].  

Early diagnosis and treatment of sleep disorders may help 
regain the restorative function of sleep, reduce daytime 
sleepiness, reduce the risk of accidents and cardiovascular 
diseases, and improve quality of life [4]. Polysomnography 
(PSG) is a type of sleep study that is widely used in the 
diagnosis of sleep disorders. It is a multi-parametric test 
measuring the biophysiological changes, including 

brain activity, heart rhythm, eye movements, and muscle 
activity, during sleep. The recorded data is divided into small 
time windows called epochs and multiple physiological signals 
are analyzed in each epoch to determine the sleep (rapid eye 
movement (REM) sleep and non-REM (NREM) sleep) and 
wake stages. Sleep staging is used to determine sleep latency, 
total sleep time, sleep efficiency, sleep onset, amongst others 
[5]. These, along with other metrics such as the apnea-
hypopnea index (AHI), are useful in determining the sleep 
disorder. 

However, overnight in-laboratory PSG is labor intensive, 
time consuming, expensive, and not readily available [6, 7]. 
Sleep and wake stages cause variation in the heart rate which 
can be analyzed using the heart rate variability (HRV) [8, 9]. 
The HRV can be computed from a single-lead 
electrocardiogram (ECG) signal and descriptors of the HRV 
have shown promise in differentiating between sleep and wake 
stages [10-12]. ECG is available as wearable technology and 
ECG-based sleep-wake stage classification has the potential to 
act as a screening tool for sleep disorders. Respiration is also 
affected during sleep-wake stages and combined analysis of 
ECG and respiration signals has shown improvement in 
detecting sleep-wake stages [13, 14]. The respiration signal 
can, however, be estimated from a single-lead ECG signal, 
referred as ECG-derived respiration (EDR) [15]. While EDR 
has been well studied, such as in detecting sleep apnea, its 
application in detecting sleep stages has received limited 
attention [16, 17]. 

This study explores the use of single-lead ECG signal for 
classification of sleep-wake stages. In particular, it focuses on 
temporal and spectral analysis of the heart rate and respiration 
signals derived from the ECG for this purpose. HRV and EDR 
are unevenly sampled data. Unlike earlier work [12, 13], where 
frequency analysis is performed using Fourier transform, this 
work utilizes Lomb-Scargle periodogram [18] which has 
shown to better estimate the power spectral density of unevenly 
sampled signal than Fourier transform based methods [19]. The 
extracted features are classified using logistic regression and 
the discriminative features are selected using sequential 
backward feature selection. In addition, instead of mixing 
epochs from all subjects in cross-validation [17, 20], subject 
independent cross-validation is performed in this work to 
evaluate the performance of the proposed method in detecting 
sleep-wake stages. 



II. METHOD 

A. Dataset 

This work utilizes the MIT-BIH PSG Database [21, 22]. 
The database has a collection of 18 recordings of multiple 
physiologic signals, sampled at 250 Hz, during sleep from 16 
subjects who were monitored in Boston’s Beth Israel Hospital 
Sleep Laboratory for evaluation of obstructive sleep apnea and 
to test the effects of constant positive airway pressure (CPAP). 

An illustration of the PSG signals in the dataset is given in 
Fig. 1 and an overview of the database is provided in Table I. 
The ECG signal in each recording has been annotated beat-by-
beat together with sleep stage annotation of 30 second epochs 
using EEG and respiration signals. PSG records slp01a and 
slp01b belong to the same subject, separated by a gap of about 
1 hour, and records slp02a and slp02b are from another 
subject, separated by a gap of about 10 minutes. The other 14 
records are from different subjects. The sleep apnea 
annotations for records slp41 and slp45 were unavailable; their 
AHI was estimated using visual review. 

The database contains over 85 hours of PSG recordings and 
the duration of the recordings varies from 1.17 to 6.30 hours. 
All 16 subjects are male, aged 32 to 56 years (average age of 
42.24 years) with weight in the range of 89 to 152 kg (average 
weight of 118.63 kg). The AHI of the subjects is in the range of 
0.7 to 100.8; one subject with AHI ≤ 5, one subject with 5 ≤ 
AHI < 15, three subjects with 15 ≤ AHI < 30, and eleven 
subjects with AHI ≥ 30. The number of epochs per subject is in 
the range of 154 to 780 with a total of 10,197 epochs. 

B. Proposed Method 

This work considers the binary classification task of sleep 
epochs against wake epochs. As such, all sleep stages, REM 
and NREM, are considered as a single class. While sleep 
staging in the dataset has been performed in 30 second epochs, 
in classifying the current epoch, a 5 minute window, current 
plus adjacent epochs, is used for feature extraction, as 
recommended for analysis by the Task Force of the European 
Society of Cardiology and the North American Society of 
Pacing Electrophysiology [23]. After removing epochs with 
missing beat annotations, the usable dataset has a total of 9,977 
epochs; 6,978 sleep epochs and 2,999 wake epochs. Time and 
frequency domain features are extracted from the HRV or RR 
interval signal, computed from the beat annotations, together 
with frequency domain features from the EDR signal. 

1) RR Interval Time-Domain Features: The following 
features are extracted from the RR interval signal in each 5 
minute window: AVNN – mean of the RR intervals, SDNN – 
standard deviation of RR intervals, SKNN – skewness of RR 
intervals, KUNN – kurtosis of RR intervals, RMSSD – root 
mean square of successive RR interval differences, SDSD – 
standard deviation of successive RR interval differences, 
NN50 – number of pairs of successive RRs that differ by more 
than 50ms, pNN50 – fraction of RR intervals that differ by 
more than 50ms, NN20 – number of pairs of successive RRs 
that differ by more than 20ms, and pNN20 – fraction of RR 
intervals that differ by more than 20ms. 

 
Fig. 1. Illustration of the first 10 seconds of electrocardiogram (ECG), blood 
pressure (BP), electroencephalogram (EEG), respiration (Resp), stroke 
volume (SV), and oxygen saturation (SO2) signals from a PSG recording. 

TABLE I.  OVERVIEW OF THE DATABASE USED IN THIS WORK 

Record 
Duration 
(Hrs) 

AHI 
Age  
(Years) 

Weight  
(kg) 

Num. of 
Epochs 

slp01a 2:00 17 44 89 240 

slp01b 3:00 22.3 44 89 360 

slp02a 3:00 34 38 145 360 

slp02b 2:15 22.2 38 145 270 

slp03 6:00 43 51 152 720 

slp04 6:00 59.8 40 108 720 

slp14 6:00 30.7 37 152 714 

slp16 6:00 53.1 35 118 694 

slp32 5:20 22.1 54 92 640 

slp37 5:50 100.8 39 125 698 

slp41 6:30 60 45 145 780 

slp45 6:20 5 42 133 760 

slp48 6:20 46.8 56 - 760 

slp59 4:00 55.3 41 111 458 

slp60 5:55 59.2 49 108 710 

slp61 6:10 41.2 32 91 720 

slp66 3:40 65.5 33 95 439 

slp67x 1:17 0.7 - - 154 

 
 

2) RR Interval Frequency Domain Features: A 512-point 
Lomb-Scargle periodogram was computed for the RR interval 
signals, up to a frequency of 0.4 Hz, from which the frequency 
domain features, 32 equally spaced subband energies [24], 
were computed.  

3) EDR Frequency Domain Features: The EDR algorithm  
derives a sample of a respiratory signal for each QRS complex 
by projecting that axis onto the lead axis. The EDR signal was 
estimated using [15] and frequency analysis was performed 
same as for the RR interval signal resulting in 32 EDR 
frequency-domain features. 

As such, the final feature set has 10 time-domain RR 
interval features, 32 frequency domain RR interval features, 
and 32 EDR features – a total of 74 features. The features are 
standardized using z-score and the discriminant features are 
identified using sequential backward feature selection [25] for 
classification using logistic regression. 



TABLE II.  SLEEP AND WAKE EPOCH CLASSIFICATION RESULTS USING VARIOUS FEATURE SETS 

Features Sensitivity Specificity Accuracy AUC F1-Score 

RR Time 0.7094 0.7129 0.7104 0.7740 0.7741 

RR Frequency 0.6662 0.8083 0.7089 0.7929 0.7620 

EDR Frequency 0.7463 0.7723 0.7541 0.8274 0.8094 

RR Time + RR Frequency 0.7091 0.8033 0.7374 0.8217 0.7907 

RR Time + RR Frequency + EDR Frequency 0.7939 0.8086 0.7983 0.8811 0.8463 

 

 

Fig. 2. Box plot of the most discriminative RR interval and EDR features. 

 

C. Evalution Metrics 

The performance of the proposed method is evaluated using 
sensitivity, specificity, accuracy, area under the curve (AUC) 
of the receiver operating characteristic (ROC) curve, and F1-
score, where sensitivity and specificity are the proportion of 
sleep and wake epochs that are correctly classified, 
respectively. The optimal threshold on the ROC curve is 
determined as the point on the ROC that minimizes the 
distance to the point (0,1). 

III. EVALUATION RESULTS 

A. Experimental Setup 

The performance of the model is evaluated in leave-one-
subject-out cross-validation whereby, in each fold, the epochs 
from 15 subjects are used to train the classifier and epochs 
from the remaining subject are used for validation. The 
features are standardized and selected using sequential 
backward feature selection in each fold. 

The performance is evaluated on the three individual 
feature sets: RR interval time-domain features, RR interval 
frequency domain features, and the EDR frequency domain 
features. In addition, to gauge the effectiveness of the EDR 
features on the combined feature set, the performance is first 
evaluated on the combined RR interval features (time + 
frequency) and then with the combined RR interval and EDR 
features.  

B. Results 

The sleep vs wake epoch classification results using the 
different feature sets are given in Table II. An accuracy of 
0.7104 (AUC=0.7740) is achieved using RR interval time-
domain features and an accuracy of 0.7089 (AUC=0.7929) 
using RR interval frequency domain features. As such, there is 

slight improvement in the AUC using the frequency domain 
features. An accuracy of 0.7541 (AUC=0.8274) is achieved 
using the EDR features which is the best results of the three 
individual feature sets. 

The boxplot of the most discriminative feature from each 
feature group is illustrated in Fig. 2. These are the NN50 
feature from the RR interval time-domain feature set, subband 
energy in frequency band 3 (corresponding to frequency 0.025-
0.0375 Hz) from the RR interval frequency-domain feature set, 
and subband energy in frequency band 22 (corresponding to 
frequency 0.2625-0.2750 Hz) from the EDR feature set. 

Furthermore, an accuracy of 0.7374 (AUC=0.8217) is 
achieved using the combined RR interval features which is an 
improvement over the individual RR interval feature sets but 
lower than what is achieved using the EDR features. The 
inclusion of EDR features in the combined RR interval features 
improves the accuracy to 0.7983 (AUC=0.8811) together with 
a sensitivity, specificity, and F1-score of 0.7939, 0.8086, and 
0.8463, respectively. These are the best results of all the 
individual and combined feature sets considered in this work.  

The ROC curves using the different feature sets are 
illustrated in Fig. 3 which further demonstrates the superiority 
of the EDR features and the combined RR interval and EDR 
features. In addition, the ROC curves for the four different AHI 
groups using the best feature set are given in Fig. 4. The 
highest AUC is achieved for the group 15 ≤ AHI < 30 and 
lowest for AHI ≥ 30. However, the number of subjects in the 
AHI groups is unevenly distributed with some groups having 
only one subject, making a conclusive interpretation difficult. 

IV. DISCUSSION AND CONCLUSION 

A method for classification of sleep stages using ECG 
signal analysis in presented in this paper. An accuracy of 80%



 
Fig. 3. ROC curves for sleep-wake stage classification using various feature 
sets. 

 

Fig. 4. ROC curves for sleep-wake stage classification for different AHI 
groups. 

 

(AUC=0.8811) is achieved using combined HRV and EDR 
features, a relative improvement of 8.26% in accuracy and 
7.23% in AUC over the HRV features. This work, however, 
has some limitations. In particular, the database is relatively 
small, there are no female subjects, and there are lack of 
healthy subjects and subjects with other types of sleep 
disorders. Therefore, it is hoped to evaluate the performance of 
the proposed method on a larger and more diverse dataset in 
future. 
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