
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of 
use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available 
online at: https://doi.org/10.1007/s40846-021-00646-8. 

End-to-End Sleep Apnea Detection Using Single-Lead ECG Signal and 1-D Residual 
Neural Networks 

 
Roneel V. Sharan1*, Shlomo Berkovsky1, Hao Xiong1, and Enrico Coiera1 

 
1Australian Institute of Health Innovation, Macquarie University, Sydney, NSW 2109, Australia 

*Corresponding author. Email: roneel.sharan@mq.edu.au 

Abstract 
Purpose: Sleep apnea causes heart rate variability (HRV). HRV can be detected from the 
electrocardiography (ECG) signal and descriptors of HRV during sleep have been shown to be 
useful predictors of sleep apnea. In this work, we study the use of raw ECG signal and deep one-
dimensional residual neural network (1-D ResNet) for end-to-end sleep apnea detection. 

Methods: Our method uses raw single-lead ECG signal as an input to a 1-D convolutional neural 
network (CNN) with residual connections, exploiting CNN’s ability to learn distinguishing 
signal characteristics directly from the ECG signal and thereby forgoing the need for human 
engineered signal processing, feature extraction, and feature selection. In addition, we use 
weighted cross-entropy loss to account for the imbalance of apnea and non-apnea segments in 
our dataset, Bayesian optimization for fine-tuning the network hyperparameters, and data from 
current and adjacent epochs for predicting the label of the current epoch. The final ECG-based 
apnea detection network is evaluated on a dataset of 70 overnight ECG recordings. 

Results: The proposed method achieved an accuracy of 93.05% (AUC=0.9819) in detecting sleep 
apnea segments when considering adjacent epochs, thus, outperforming several baseline 
techniques. Furthermore, the method achieved 100% accuracy in separating sleep apnea 
recordings from normal recordings.  

Conclusion: Our simple yet robust approach to ECG-based apnea detection demonstrates high 
accuracy. It has the potential to improve detection and diagnosis of sleep apnea and improve 
quality of life and health outcomes for millions of people worldwide. 

Keywords: Bayesian optimization, electrocardiography, heart rate variability, obstructive sleep 
apnea, residual neural network 

1 Introduction 

Inadequate sleep has been associated with a range of mental and physical health problems [1]. 
The 2011-2014 national health interview survey in the United States shows that 31.6% of adults 
get insufficient sleep [2] and a similar 2016 Australian survey shows that 33%-45% of adults are 
affected by inadequate sleep and its daytime consequences [3]. Sleeping disorders are a common 
cause of inadequate sleep and one of the most common sleeping disorders is sleep apnea.  

Sleep apnea is the involuntary cessation of breathing during sleep. Obstructive sleep apnea 
(OSA) is the most common type of sleep apnea, characterized by repeated episodes of partial 
(hypopnea) or complete obstruction (apnea) of the upper airways during sleep, limiting airflow to 
the lungs. The severity of sleep apnea is measured by the apnea-hypopnea index (AHI) which is 
defined as the number of apnea and hypopnea events per hour of sleep. The prevalence of OSA 
(AHI ≥ 5) in adults in the general population ranges from 9% to 38% [4]. 

Individuals with OSA experience a significant sleep disturbance leading to excessive daytime 



2 
 

 
 

sleepiness and fatigue, which can potentially cause automobile accidents [5]. OSA is also 
associated with a number of medical conditions. In particular, there is an increased risk for 
coronary artery disease, congestive heart failure, and hypertension in individuals with severe 
sleep apnea [6]. 

Early diagnosis and treatment of OSA can help reverse symptoms, improve cognitive 
performance and quality of life [7], and reduce cardiovascular risks [8]. Polysomnography (PSG) 
is a widely used procedure in the diagnosis of OSA. PSG is a type of sleep study where multiple 
physiological signals are recorded during sleep using various sensors and channels. The test is 
normally performed by sleep technicians in specialized sleep laboratories and physiological 
changes such as brain activity, eye movement, heart rhythm, muscle activity, respiratory effort, 
nasal pressure, and blood oxygen saturation levels are recorded overnight while the subject is 
asleep [9]. The recorded data is divided into small time windows (or epochs), the classifications 
of which is then used to determine the presence and severity of sleep apnea for the subject. 

Setting up this multi-parametric test is time consuming. There can also be subjectivity in the 
analysis of the multiple hours of PSG data and the lack of recommendations about screening and 
the high costs of diagnostic PSG renders OSA underdiagnosed [10]. Recent research 
advancements in this area allow for the diagnosis to be achieved with fewer physiological 
signals, requiring fewer sensors and channels. Portable home sleep apnea tests are, therefore, 
being increasingly used to test medically uncomplicated subjects [11, 12].  

While various approaches have been investigated [13-15], one line of research that has gained 
significant attention over the last two decades utilizes heart rate data. Apnea and hypopnea 
events lead to variations in heart rate, where the heart rate decreases during apnea and increases 
during recovery [16]. This characteristic behavior, known as heart rate variability (HRV), has 
been the subject of multiple studies investigating objective detection of apnea epochs using 
signal processing and machine learning techniques [17-21]. 

1.1 Related Work 

Past techniques for HRV based apnea classification involve detecting the location of the R peaks 
in the ECG signal using the QRS detection algorithms followed by feature engineering. The R-R 
interval is computed as the difference between two consecutive R peaks and the resulting signal 
is used for feature extraction. Time and frequency domain features of the R-R interval signal are 
by far the most commonly used features [19-23].  

For the computation of frequency domain features, the R-R interval signal needs further 
transformation into the frequency domain. The Lomb-Scargle periodogram [24] has been shown 
to be more suited for estimating the power spectral density of the unevenly sampled R-R interval 
signals then fast Fourier transform based methods [25]. Analysis of normalized spectral energy 
in four frequency bands is used: ultra-low frequency (0-0.003 Hz), very-low frequency (0.003-
0.04 Hz), low frequency (0.04-0.15 Hz), and high frequency (0.15-0.4 Hz), together with the 
ratio of energy in the high and low frequency bands [26-28]. However, spectral analysis in finer 
frequency sub-bands is also useful [19]. Frequency-domain analysis of the R-R interval signals 
has generally produced better results than time-domain analysis [17].  

Other feature extraction techniques such as the ECG-derived respiratory (EDR) signal [19, 21, 
22, 29], cardiopulmonary coupling (CPC) [19], QRS morphology and subspace projections [22], 
and wavelet transform [30] have also been studied. While various classification methods have 
been experimented with, support vector machines (SVM) have been a popular choice of 
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classifier due to their superior accuracy compared to conventional classification methods [18, 20-
22, 30]. 

However, over the last decade, deep learning techniques have outperformed feature engineering-
based techniques in apnea detection. Convolutional neural networks (CNNs), a popular deep 
learning method, originally used for image classification, have been shown to learn 
discriminative class characteristics directly from images [31]. CNNs have also been adopted in 
physiological signal classification applications by transforming the signal to an image-like 
representation [32, 33]. 

In detecting sleep apnea using ECG, the R-R interval signal has been used as an input to CNN 
[28, 34-36]. HRV is an unevenly sampled data. In [28, 34], cubic interpolation [37] is utilized to 
resize the data to a common dimension and padding is another technique to resize signals to 
equal dimensions [38, 39]. In [35], the R-R interval signal is adjusted to an image-like 
representation for classification using CNN. More recently, CNNs have been used to detect 
apnea directly from the ECG signal [40, 41]. 

1.2 Raw ECG and 1-D ResNet for Apnea Detection 

In this study, we explore the use of raw single-lead ECG signal as a direct input to a one-
dimensional CNN (1-D CNN) for detecting sleep apnea epochs. Our method offers various 
advantages and improvements compared to earlier works using a similar approach to this 
problem [40, 41]. With the conventional plain CNN, the convergence of the model starts to 
degrade with a deep architecture [42]. This problem can be addressed using residual learning, 
such as using identity and projection shortcuts [42]. While residual learning has been applied to 
the R-R interval signal for this purpose [36], in this work, we extend the residual learning 
framework to a 1-D CNN for raw ECG-based apnea detection. The resulting network is referred 
as a 1-D residual neural network (1-D ResNet) [43, 44] and evaluated against various 
conventional classification methods and a plain network used in [40, 41]. 

In addition, the duration of apnea episodes can last over a minute [45]. However, only a small 
portion of an episode may be present in an epoch, which typically have a duration of 30 or 60 
seconds, and the episode can span multiple adjacent epochs [46]. With conventional 
classification methods, using data from epochs adjacent to the current epoch being predicted, has 
shown to strengthen the ability of the classifier to distinguish between apnea and non-apnea 
epochs [19, 23, 34, 47]. In this work, we extend this approach to a deep learning framework. In 
particular, we evaluate two scenarios: using ECG data from the current epoch only to predict the 
current label and using ECG data from the current and adjacent, previous and following, epochs 
to predict the label of the current epoch. 

Also, in medical applications, the number of disease samples is generally much lower than the 
number of normal samples which can lead to a biased model, particularly in deep learning 
applications. Conventionally, this problem has been addressed by balancing the dataset [40], 
such as using oversampling, undersampling, and data augmentation [35]. In this work, we 
explore the use of a weighted classification loss function [48] with the advantage of utilizing the 
full dataset without the need for data duplication, data removal, or generation of synthetic data.  

Furthermore, a deep learning network has a number of hyperparameters, variables which 
determine how the network is trained. These variables can be tuned using trial and error, as in 
[41]. However, training deep learning models in this fashion can be time consuming and the 
obtained hyperparameters may not be optimal. In this work, we use Bayesian optimization for 
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fine-tuning the 1-D ResNet hyperparameters. The Bayesian optimization algorithm aims to 
minimize an objective function in a bounded domain. The generalization performance of the 
Bayesian optimization learning algorithm is modeled from a Gaussian process and it has been 
shown to be effective in various hyperparameter optimization tasks [49, 50]. To analyze the 
robustness of our proposed method in ECG-based apnea classification, we analytically compare 
our results against several earlier methods.  

The rest of the paper is organized as follows. In Section 2, we overview the dataset used in this 
work and the proposed and baseline methods. Experimental results are provided in Section 3 
followed by the discussion of the results and conclusions in Section 4. 

2 Method 

We first describe the dataset used in this work followed by the proposed and baseline methods. 

2.1 Dataset 

This work utilizes the Apnea-ECG dataset [51, 52]. The dataset contains 70 overnight ECG 
recordings divided equally into training and test subjects: 35 recordings (total recording time of 
285.42 hours) for training and 35 for testing (total recording time of 288.38 hours). The ECG 
signals are sampled at 100 Hz and vary in duration from 401 to 578 minutes. Human experts 
annotated each 60 second window (or epoch) as apnea or non-apnea based on simultaneously 
recorded respiration and other related signals. The age of the subjects in the dataset ranges from 
27 to 63 years with 30 male subjects in the training dataset and 27 male subjects in the test 
dataset. 

The recordings of every subject are grouped into one of the following three classes: Class A 
(apnea) – at least one hour with an AHI ≥ 10 and at least 100 minutes with apnea, Class B 
(borderline) – at least one hour with AHI ≥ 5 and 5 to 99 minutes with apnea, and Class C 
(control) – fewer than 5 minutes with apnea. This dataset was originally released for two tasks: 
classifying each epoch as apnea or non-apnea and classifying each subject’s recording as apnea 
(Class A) or normal (Class C). These two tasks also form the subject of investigation in this 
work. 

2.2 Proposed Method 

An overview of the proposed method in apnea and non-apnea epoch classification is given in 
Fig. 1. The training block contains the ResNet model, which is trained, and the hyperparameters 
optimized, on the training data. At the end of the training process, we obtain a trained ResNet. 
The performance of the trained ResNet is evaluated on the test data. 

The dataset contains 17,010 epochs (6,514 of them being apnea epochs) from the 35 training 
recordings and 17,268 epochs (6,550 apnea epochs) from the 35 test recordings. We use raw 
ECG signals as a direct input to a 1-D ResNet and do not apply any preprocessing. We consider 
two strategies for the problem of predicting the label of each 60 second epoch. In the first 
approach, we use data from the current epoch 𝐱௜ to predict the label 𝑦௜ of the epoch. In the 
second approach, we use data from a window of the current and adjacent (both previous and 
following) epochs 𝐱௜ᇱ ൌ ሾ𝐱௜ି௔, … , 𝐱௜, … , 𝐱௜ା௔ሿ to predict the label of the current epoch. The total 
number of combined epochs is 3 when 𝑎 ൌ 1 and 5 when 𝑎 ൌ 2. 

The architecture of the 1-D ResNet is shown in Fig. 2. The plain network architecture was 
informed by offline experiments with a number of parameters and is inspired by the architecture 
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of [38]. In the input layer, the ECG signal is normalized using zero mean and unit standard 
deviation to remove the effect of subject variability on the signal. Considering the adjacent 
epochs, the plain network for classification of 5 combined epochs (5 minutes with 30,000 sample 
points), consists of twelve convolutional layers, each followed by a batch normalization (BN) 
layer [53], rectified linear unit (ReLU) [54], and a max pooling layer [55]. Each convolutional 
layer has 32 filters. The kernel size for the first nine convolutional layers is 10 ൈ 1 while the 
filter sizes of the remaining three convolutional layers are 6 ൈ 1, 5 ൈ 1, and 4 ൈ 1, all with a 
stride of 1 ൈ 1. The inclusion of a batch normalization layer after each convolutional operation 
makes the learning process faster and more stable [53]. The first nine max pooling layers have a 
pool size of 6 ൈ 1 and the remaining three are 4 ൈ 1, 3 ൈ 1, and 2 ൈ 1. Each max pooling layer 
uses a stride of 2 ൈ 1 which halves the input and we couple a pooling layer with each 
convolutional layer.  

The residual connections are added to the network every two sets of layers [42]. Projection 
shortcuts, a couple of 1 ൈ 1 convolutions with stride 2 ൈ 1, are used to match the dimension 
reduction of the pooling layers, transforming the plain network to a residual network. The final 
layers include a fully connected layer and a softmax layer [56]. The training data has many more 
non-apnea than apnea epochs. A weighted classification layer is used in the final layer to account 
for this class imbalance. This is realized using a weighted cross-entropy loss between the 
prediction scores 𝑌 and training targets 𝑇 computed as 
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where 𝑁 represents the number of observations, 𝐾 – the number of classes, and 𝑐 – the class 
weights. The final network, therefore, consists of 70 layers. 

The ResNet model was trained from scratch using adaptive moment estimation (Adam) [57], 
which we found to be more robust than stochastic gradient descent with momentum [56]. The 
Adam optimization algorithm adapts the learning rate using the moving average of the first and 
second moments of the gradients. The estimators for the bias-corrected first and second 
moments, 𝑚ෝ  and 𝑣ො, respectively, for the current training iteration 𝑡 are given as 
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respectively, where 𝛽ଵ and 𝛽ଶ are the hyperparameters of the algorithm. The model weight 𝑤 is 
then updated as 
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where 𝜂 is the step size and 𝜀 is a small scalar. 

We conducted a grid search to determine the effective range of the initial learn rate, learn rate 
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drop factor, learn rate drop period, and L2 regularization. These parameters were then fine-
tuned within the limits of this range using Bayesian optimization [50] with the aim of finding a 
hyperparameter set that minimizes the cross-validation error on the training dataset as 
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where 𝑓 is the objective function to minimize, the input 𝑥 is part of the feasible set 𝑋, and 𝑥∗ is 
the hyperparameter set yielding the lowest value. Bayesian optimization works by building a 
probabilistic model of the objective function. This is then searched using an acquisition function 
to determine the hyperparameters to evaluate on the true objective function. As an example, fine-
tuning of the initial learn rate and L2 regularization using Bayesian optimization is illustrated as 
a surface plot in Fig. 3. The objective function is minimization of the cross-validation error. In 
practice, we could minimize the error by concurrently tuning more than two variables but for 
illustration we use only two variables. 

We use the same network as in Fig. 2 for combinations of 3 epochs with input dimension of 
18,000. When only the current epoch is used to predict the current label, the input dimension is 
6,000. The first two sets of convolution, batch normalization, ReLU, and pooling layers and the 
accompanying residual connection are removed to account for the smaller input size. 

2.3 Baseline Methods 

The dataset provides the location of the R-peaks, computed using the QRS complex detection 
algorithm [58]. We use the R-R interval signal for implementing two baseline methods. 

2.3.1 R-R Interval Signal Features 

The first baseline method involves time and frequency domain features extracted from the R-R 
interval signal. We use 10 time-domain features [26, 27]. These include the mean, standard 
deviation, skewness, and kurtosis of the R-R intervals; root mean square and standard deviation 
of successive R-R interval differences; number of pairs of successive R-R intervals that differ by 
more than 20ms and 50ms; and fraction of the R-R intervals that differ by more than 20ms and 
50ms. 

For frequency-domain feature extraction, the spectral energy of the R-R interval data is 
computed using Lomb-Scargle periodogram. We analyzed the spectral energy in 32 equally 
spaced frequency bands up to the frequency of 0.4 Hz. 

Apart from the individual time and frequency domain feature sets, we also consider their 
combined feature set. As such, this baseline method has 10 time-domain R-R interval features, 
32 frequency-domain R-R interval features, and 42 features in the combined feature set. The 
classifiers for these feature sets are logistic regression (LR) [59] and SVM [60] with a radial 
basis function (RBF) kernel. 

2.3.2 R-R Interval Signal and 1-D CNN 

In the second baseline method, the R-R interval signal is fed directly into a 1-D CNN. The length 
of the R-R interval signal varies, depending on the heart rate. Since CNN requires a fixed size 
input, we use zero-padding and cropping to get to a common data size. 

The 1-D CNN network architecture for classifying R-R interval signal is similar to the plain 
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network shown in Fig. 2. The data input length is set to 400, 250, and 100 for 5 epochs, 3 epochs, 
and 1 epoch, respectively. There are 6 sets of convolutional, batch normalization, ReLU, and 
pooling layers when data from 5 epochs is combined, 5 sets when data from 3 epochs is 
combined, and 4 sets when the current epoch only is utilized. 

2.4 Evaluation Metrics 

The performance of the proposed and baseline methods is evaluated on the test dataset using 
accuracy, sensitivity, specificity, and the area under the curve (AUC). Accuracy is defined as the 
percentage of apnea and non-apnea epochs that were predicted correctly, sensitivity/specificity is 
the percentage of apnea/non-apnea epochs that were predicted correctly, and AUC corresponds 
to the area under the receiver operating characteristic (ROC) curve. For the class A versus class 
C subject classification task, we report the percentage of correctly classified subjects based on 
the epoch classifications and the definition of classes from Section 2.1. For all the metrics, values 
closer to 1 or 100% indicate a strong performance of an algorithm in distinguishing between 
apnea and non-apnea epochs or subjects. 

3 Results 

Results using the proposed and baseline algorithms described in sections 2.2 and 2.3, 
respectively, are presented in this section. Results using the current epoch data only are presented 
first, followed by results using the current and adjacent epochs, and concluded by the results of 
recording-level predictions. We discuss the obtained results in section 4. 

3.1 Current Epoch to Predict Current Label 

Results for apnea and non-apnea epoch classification using data from the current epoch only are 
given in Table 1. In the analysis we focus on the predictive accuracy and AUC (as a single-
number combination of sensitivity and specificity) metrics. With the R-R interval signal features, 
the frequency-domain features yield a better classification performance than time-domain 
features, with SVM consistently outperforming LR. There is only a minor improvement in the 
classification performance when the two feature sets are combined. The best classification 
accuracy of 79.61% (AUC=0.8483) is achieved using the combined feature set and SVM 
classifier. 

With a classification accuracy of 82.60% (AUC=0.8975), the classification performance is 
further improved using the R-R interval signal with 1-D CNN. The use of raw ECG signal with 
1-D CNN (plain network) yields an accuracy of 87.10% (AUC=0.9398). However, the best 
classification accuracy of 89.30% (AUC=0.9520) is achieved using the proposed raw ECG signal 
and a 1-D ResNet.  

3.2 Current and Adjacent Epochs to Predict Current Label 

In Table 2, we present results for apnea and non-apnea epoch classification using a combination 
of the current and adjacent epochs. As far as the time and frequency domain features of the R-R 
interval signal are concerned, the latter outperform the former, while the best classification 
accuracy is achieved again using the combined feature set and SVM classifier. The classification 
accuracy using 3 epochs is 82.65% (AUC=0.8765), which is slightly inferior to 83.27% 
(AUC=0.8772) achieved with 5 epochs. These increase to 86.83% (AUC=0.9377) and 88.60% 
(AUC=0.9467) using the R-R interval signal and 1-D CNN. The results are further improved 
with the use of raw ECG signal and 1-D CNN; accuracy of 91.08% (AUC=0.9695) with 3 
epochs and 91.72% (AUC=0.9730) with 5 epochs. However, the best results are again achieved 
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using the raw ECG and 1-D ResNet; accuracy of 91.94% (AUC=0.9760) with 3 epochs and 
93.05% (AUC=0.9819) with 5 epochs. Overall, the accuracy and AUC scores produced by the 5 
epochs data are superior to those produced using 3 epochs. 

3.3 Recording Prediction 

Finally, we use the epoch prediction results to predict the label of the recordings in the test 
dataset as per the criteria described in Section 2.1. We achieve an accuracy of 100% in 
classifying the recordings of the subjects as apnea (Class A) and normal (Class C). The perfect 
accuracy is obtained by all the evaluated 1-D ResNet classification models using the raw ECG 
data. 

4 Discussion and Conclusions 

The proposed raw ECG signal and 1-D ResNet approach performed well on the apnea and non-
apnea epoch classification task. The distinguishing characteristics of the ECG signal are typically 
derived from analysis of the time-series data and handcrafted features are then used to represent 
the ECG signal [19]. This inevitably leads to information loss. On the contrary, in this work, 
deep residual neural network is shown to accurately learn such temporal characteristics directly 
from the raw signal, forgoing the need for manual signal processing and feature engineering. 

The performance of our method improved when the data of the epoch being predicted was 
complemented with data from adjacent epochs. The best results were achieved using 5-minute 
windows, although, only marginally better than 3-minute windows. Notably, 5-minute window 
length is also recommended for analysis of short-term recordings by the Task Force of the 
European Society of Cardiology and the North American Society of Pacing Electrophysiology 
[61]. 

When compared to [40, 41], in our work the ECG signals do not require any preprocessing, the 
use of residual connections provides improvement over a plain network, and the imbalance in 
our dataset is catered for using a weighted cross-entropy loss, without the need for data deletion 
or duplication required in undersampling and oversampling, respectively. Our method is further 
strengthened by the use of ECG data from adjacent epochs and fine-tuning of network 
hyperparameters using Bayesian optimization, achieving the highest accuracy of 93.05% 
(AUC=0.9819) when data from adjacent epochs is considered. 

We propose a simple yet robust method for detecting sleep apnea. While sleep apnea affects 
millions of people worldwide, sleep studies for diagnosing sleep apnea are expensive, not readily 
available, involve a suite of expensive sensors requiring time to set up, and the multitude of 
signals captured during a sleep study requires significant time to analyze. The proposed method, 
on the other hand, relies only on single-lead ECG data which can be measured by commercial-
grade wearable devices, such as the Apple Watch [62]. As such, the proposed method could be 
integrated with wearable devices for screening apnea subjects at the comfort of their home. The 
method is shown to achieve strong classification performance, at the epoch and subject level 
alike, having the potential to improve apnea detection and diagnosis. Treatment of sleep apnea 
can follow the diagnosis and clinical treatments, such as using positive airway pressure, have 
been associated with improvement in quality of life [63] and reduced mortality [64]. 

Our work, however, has some limitations. First, we evaluated only a small number of neural 
network implementations and architectures. While we obtained promising results, it should be 
highlighted that recently there has been a tremendous interest in the deep learning research and a 
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multitude of new methods are regularly published. It is possible that some of these perform well 
with ECG data and sleep apnea detection task, and eventually outperform our results. We leave a 
thorough evaluation of other deep learning methods for future studies. Second, the use of single-
lead ECG signal only may be seen as a limitation. Despite being relatively cheap and easy to 
administer, the obtained results could potentially be improved by fusing other sensing 
technologies. While not aiming to achieve the full instrumentation offered by the PSG setting, 
we posit that adding a pulse oximeter sensor may improve the accuracy of sleep apnea detection, 
as pulse oximetry captures complementary oxygen saturation information [65]. Finally, our 
training dataset is limited to only 35 subjects of which only 5 are females and only 10 are 
normal. As such, it is not clear if a model developed on this small and imbalanced dataset will 
generalize to larger and more diverse populations. In addition, the dataset does not include any 
records of comorbidities, which would be present in practical situations. The proposed method 
would need to be evaluated on a larger and more balanced dataset with a more diverse population 
and a range of comorbidities, so that it could be eventually used as a robust sleep apnea 
diagnostic tool. 
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Fig. 1:  An overview of the proposed method used for classifying raw ECG signal epoch into 
apnea and non-apnea. 

 

 

Fig. 2:  Architecture of the 1-D ResNet used in this work. 

 

 

Fig. 3:  Illustration of Bayesian optimization of the initial learn rate and L2 regularization. 
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Table 1: Results of Current Epoch Data Only. 

Input Classifier 
Acc 
(%)

Sens 
(%)

Spec 
(%)

AUC 

Time-domain features LR 73.82 58.32 83.32 0.7800 
SVM 77.57 72.89 80.43 0.8298 

Frequency-domain features LR 78.55 67.64 85.23 0.8149 
SVM 79.12 73.00 82.87 0.8458 

Combined features 
(time + frequency) 

LR 76.48 62.42 85.10 0.8085 
SVM 79.61 70.51 85.18 0.8483 

Raw R-R Intervals CNN 82.60 76.34 86.44 0.8975 
Raw ECG Signal CNN 87.10 81.65 90.43 0.9398 
Raw ECG Signal ResNet 89.30 85.62 91.55 0.9520 

 

Table 2: Results of Current and Adjacent Epochs Data. 

Input Classifier 
Current Epoch ± 1 Epoch Current Epoch ± 2 Epochs 

Acc 
(%)

Sens 
(%)

Spec 
(%)

AUC 
Acc 
(%)

Sens 
(%) 

Spec 
(%)

AUC 

Time-domain features LR 71.21 62.50 76.57 0.7599 70.18 58.74 77.24 0.7518 
SVM 78.32 73.07 81.55 0.8398 78.39 66.32 85.85 0.8389 

Frequency-domain features LR 81.66 74.86 85.85 0.8473 81.93 71.73 88.22 0.8498 
SVM 82.01 76.20 85.58 0.8682 82.34 73.78 87.63 0.8695 

Combined features 
(time + frequency) 

LR 69.72 27.15 95.95 0.6155 78.83 63.30 88.42 0.8286 
SVM 82.65 77.39 85.89 0.8765 83.27 74.02 88.98 0.8772 

Raw R-R Intervals CNN 86.83 81.89 89.88 0.9377 88.60 81.44 93.03 0.9467 
Raw ECG Signal CNN 91.08 88.93 92.40 0.9695 91.72 87.88 94.09 0.9730 
Raw ECG Signal ResNet 91.94 89.33 93.55 0.9760 93.05 90.16 94.84 0.9819 

 


