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A B S T R A C T   

Background and objective: Cough is a common symptom of respiratory diseases and the sound of cough helps in 
understanding the condition of the respiratory system. Objective artificial intelligence driven cough sound 
evaluation has the potential to aid clinicians in diagnosing respiratory diseases. Automatic cough sound detection 
is an important step in performing objective cough sound analysis. Current methods in automatic cough sound 
detection involves various signal transformation and feature engineering steps which are not only complex, but 
can also lead to loss of signal characteristics and thereby suboptimal classification performance. This work aims 
to develop algorithms for robust cough sound detection directly from the audio recordings. 
Methods: The proposed method utilizes SincNet, a one-dimensional convolutional neural network that uses sinc 
functions in the first convolutional layer to discover meaningful filters in the audio signal, and bidirectional 
gated recurrent unit, a type of recurrent neural network to learn the bidirectional temporal dependencies be-
tween the sequences in the audio signal. The filter parameters of the SincNet are initialized using the model of 
the human auditory filters. The proposed approach is evaluated on a manually annotated dataset of 400 audio 
recordings, containing more than 72,000 cough and non-cough frames. 
Results: A validation accuracy of 0.9509 (AUC = 0.9903) and test accuracy of 0.9496 (AUC = 0.9866) is achieved 
in detecting cough and non-cough frames in the audio recordings using the proposed method. 
Conclusion: The proposed cough detection approach forgoes the need for signal transformation and feature en-
gineering and outperforms multiple baseline methods.   

1. Introduction 

Respiratory diseases are among the most common causes of illness 
and death worldwide [1,2]. Cough is a common symptom in respiratory 
diseases. Different respiratory diseases can affect the airways differently 
and, therefore, can cause variations in cough sounds, such as productive 
(wet) and non-productive (dry) [3], the distinctive barking cough of 
croup [4], and whooping cough [5]. While the cough of COVID-19 is not 
as well understood, several research groups around the world are 
studying it. 

Automatic cough sound detection is an important part of cough 
sound analysis algorithms [4]. In earlier works, cough detection is a 
multistage process. In [6], various handcrafted features and time delay 
neural network are used for classification. A similar approach is also 
adopted in [4]. Handcrafted features are also used in [7], extracted using 
the openSMILE toolkit [8], for classification using random forest and 
gradient boosting, two ensemble classifiers. 

A multistage cough sound detection approach is also employed in 

[9], but with deep learning classification. The audio signal is pre-
processed by removing silence and low energy windows. The remaining 
time windows are then frequency transformed using short-time Fourier 
transform (STFT). Two deep learning approaches are experimented 
with. Firstly, the resulting time-frequency image-like representation is 
used for classification using two-dimensional convolutional neural net-
works (CNN). Secondly, they experiment with recurrent neural net-
works (RNN), to learn the dependencies between the frequency 
transformed frames. 

However, deep learning on the frequency transformed signals pre-
sents less learnable parameters for the deep learning model. In addition, 
the multistage processes in cough sound detection employed in these 
earlier works can be time consuming and complex. The various signal 
transformations can also lead to loss of signal characteristics and thereby 
compromise the accuracy in cough detection. 

It is possible to feed the raw audio signal frames as direct input to 
standard CNNs, as seen in speech recognition [10]. The first convolu-
tional layer of such raw waveform-based CNNs is important as it deals 
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with high-dimensional waveform input and is more affected by the 
vanishing gradient problem, but the filters learned by the network take 
noisy and discordant shapes [11]. This leads to an inefficient represen-
tation of the sound signals. As such, while the raw audio signal segments 
can be fed directly to a standard CNN, it will only learn low-level cough 
sound representations from the waveforms. 

This work aims to perform cough sound detection using raw audio 
signals; however, it proposes to introduce some constraints on the shape 
of the CNN filters in the input layer to help the CNN learn more mean-
ingful filters. The proposed method is inspired by SincNet [11], a deep 
learning network architecture originally proposed for speaker recogni-
tion using raw waveform. Unlike the standard CNN where the filterbank 
characteristics depend on several parameters, the SincNet utilizes a set 
of parameterized sinc functions with which the raw waveform is 
convolved. The sinc functions implement bandpass filters and the cutoff 
frequencies are the only parameters learned. This helps the network 
learn high-level tunable parameters with broad impact on the design of 
the resulting filter and, therefore, discover more meaningful character-
istics in the audio signal. SincNet has been shown to produce faster 
convergence of the network during training and performance gains over 
the standard CNN [11]. 

This work proposes two improvements to the original SincNet. 
Firstly, it proposes the use of gammatone filterbank for initializing the 
SincNet filter parameters. Gammatone filters are a widely used model of 
auditory filters and have the advantage of providing finer frequency 
characterization at low frequencies where important cough character-
istics are located [4]. Gammatone filters can be considered an 
improvement over the triangular filters conventionally used in mel fil-
ters. Secondly, it proposes the use of gated recurrent units (GRU) [12]. 
GRU is a type of RNN, similar to long short-term memory (LSTM) net-
works, but with a smaller number of gates and parameters. A compari-
son of LSTM and GRU shows that GRU can outperform LSTM in 
convergence and in parameter updates and generalization. In particular, 
this work proposes the use of bidirectional GRU (BiGRU) that uses a 
finite sequence to predict the class of each cough or non-cough frame of 
a sequence of frames based on its past and future contexts. As such, 
while the SincNet will learn the spectral characteristics within the 
frame, this work will use BiGRU to learn the temporal dependencies 
between the frames. The proposed SincNet-BiGRU method is evaluated 
on a dataset of 400 manually annotated cough and non-cough audio 
recordings containing more than 72,000 cough and non-cough frames. 
The performance of the proposed method is compared against several 
baseline methods to demonstrate its effectiveness in detecting cough and 
non-cough sound signals. 

2. Method 

2.1. Dataset 

The dataset of cough sound recordings used in this work was 
collected as part of COVID-19 research [13]. The dataset has been 
crowdsourced from subjects from around the world, likely using 
different recording devices and recorded in different environments, 
making this a very diverse and challenging dataset. The original dataset 
has 27,550 recordings. 

A fraction of the cough recordings has been annotated by up to four 
expert physicians in the original dataset. This work utilizes 200 audio 
recordings from this subset, referred here as the cough sound recordings. 
These recordings either contain cough sounds and silence or cough 
sounds, silence, and other non-cough sounds, such as speech, music, 
radio, television, etc. The cough sounds in these 200 recordings are 
manually segmented by the author for supervised cough sound detec-
tion. An example of a cough recording containing cough sounds, silence, 
and speech is illustrated in Fig. 1(a). 

While it is important for a cough detection algorithm to be able to 
detect cough sounds, it is also important to reject non-cough sounds. The 

cough sound recordings selected for this work contain non-cough sounds 
as well but the amount of non-cough sounds that are non-silence is 
limited in these recordings. For this reason, an additional 200 audio 
recordings are manually annotated by the author from the overall 
dataset that do not contain any cough sounds, referred as non-cough 
sound recordings. An example of a non-cough sound recording is given in 
Fig. 1(b) where the subject is counting from 1 to 10 instead of coughing. 

The audio recordings are sampled at 16 kHz and in waveform audio 
file format (WAV). An overview of the final dataset used in this work is 
provided in Table 1. The overall dataset of 400 recordings is divided into 
a training and validation set of 300 recordings (150 cough recordings 
and 150 non-cough recordings) and a test set of 100 recordings (50 
cough recordings and 50 non-cough recordings). The average duration 
of the training and validation recordings is 8.90 s and 8.28 s for the test 
recordings. The cough recordings in the training and validation set 
contain a total of 683 cough sounds while the cough recordings in the 
test set contain 232 cough sounds. Using a window size of 64 ms, similar 
to [9], with 25% overlap between frames results in 55,332 cough and 
non-cough frames in the training and validation set and 17,169 cough 
and non-cough frames in the test set. The average age of the subjects in 
the training and validation set is 36.09 and 39.73 in the test set. While 

Fig. 1. Illustration of (a) a cough recording and (b) a non-cough recording. The 
cough recording comprises of both, cough and non-cough segments (speech, 
non-speech, and silence) while the non-cough recording comprises of non- 
cough sounds only. In this illustration, the subject is counting from 1 to 10 in 
the non-cough recording. 
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not all subjects reported their age, it was aimed to match the age of the 
subjects based on the available data. The gender of the subjects is also 
summarized in Table 1. Based on the analysis in [13], the SNR of the 
recordings used in this work is estimated to be 13.66 ± 13.58 dB. 
Detailed description of the full dataset, including demographics and 
clinical data, can be found in [13]. 

2.2. Deep learning network 

An overview of the proposed deep learning network for raw wave-
form based cough sound detection is shown in Fig. 2. The audio signals 
are converted into a sequence of frames (sequences of 64 ms (1024 
points) with 25% overlap between sequences) at the sequence input 
layer. The number of sequences depends on the length of the signal. The 
sequence folding layer facilitates the convolutional operations, in the 
SincNet, on time steps of the audio signal sequences independently. A 
sequence unfolding layer followed by a flatten layer restore the sequence 
structure and reshape the output to vector sequences. The resulting 
vector sequences are classified using a bidirectional GRU which learns 
bidirectional long-term dependencies between the time steps of the 
sequence data. The final layers of the network include a fully connected 
layer, softmax layer [14], and classification layer. 

2.2.1. SincNet 
The SincNet comprises of 3 sets of convolutional layers. The first 

layer performs sinc-based convolutions using 80 filters of length 251. 
The next two are standard convolutional layers using 60 filters of length 
5. Each layer is followed by a batch normalization layer [15], a leaky 
rectified linear unit [16] with a scalar multiplier for negative inputs 
equal to 0.2, and a 1 × 3 max pooling layer. The stride for all con-
volutional and max pooling layers is 1. This is followed by three fully 
connected layers. Each fully connected layer has an output size of 256 
and is followed by batch normalization and leaky rectified linear unit 

layers. 
When using the raw time-domain cough or non-cough audio signal as 

input to a standard CNN, the first layer performs convolution between 
the input waveform and some finite impulse response filter, given as 
[17] 

y[n] = x[n] ∗ h[n] =
∑L− 1

l=0
x[l]⋅h[n − l] (1)  

where x[n] is a segment from a cough or non-cough audio signal, h[n] is 
the filter of length L, and y[n] is the filtered output. All L elements of the 
filter are learned from the data in the standard CNN. 

In the SincNet, convolution is performed with a predefined function g 
that depends on only few learnable parameters θ, given as 

y[n] = x[n] ∗ g[n, θ] (2)  

and the frequency response of g is a rectangular function [11]. In 
frequency-domain, the magnitude response of a bandpass filter is 
essentially a difference of two such filters given as 

G(f ) = rect
(

f
2f2

)

− rect
(

f
2f1

)

(3)  

where f1 and f2 are the lower and upper cutoff frequency of the bandpass 
filter and rect(⋅) is the rectangular function [18]. In time-domain, this 
transforms to 

g(n) = 2f2sinc(2πf2n) − 2f1sinc(2πf1n) (4)  

where the sinc function is given as sinc(x) = sin(x)/x. 
The cutoff frequencies are initialized in the range [0, fS/2], where fS 

is the sampling frequency of the audio signal. In this work, it is per-
formed using the equivalent rectangular bandwidth [19], a psycho-
acoustic measure of the width of the human auditory filters, described as 

Table 1 
Overview of the training and validation, and test datasets used in this work.    

Training and validation recordings Test recordings   

Cough Non-Cough All Cough Non-Cough All 

Number of recordings 150 150 300 50 50 100 
Number of coughs in recordings 683 0 683 232 0 232 
Average recording duration (seconds) 8.76 9.04 8.90 8.48 8.09 8.28 
Number of frames (64 ms, 25% overlap) 27,229 28,103 55,332 8,785 8,384 17,169 
Average age (years) 35.57 38.00 36.09 38.45 41.96 39.73 
Gender Male 92 22 114 31 13 44  

Female 40 22 62 13 16 29  
Other/Unknown 18 106 124 6 21 27  

Fig. 2. An overview of the proposed method in cough sound detection. The method is based on sequence-to-sequence classification. It uses SincNet to learn intra-frame 
characteristics from the raw signal and bidirectional gated recurrent unit to learn the temporal dependencies between the sequence of frames. 
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ERB(f ) = 24.7
(

4.37f
1000

+ 1
)

(5)  

where f is the center frequency of the filter in Hz and ERB(f) is the 
bandwidth in Hz. The relationship between the number of ERBs to fre-
quency is obtained by integrating the reciprocal of (5). The number of 
ERBs is then obtained as [19] 

E = 21.4log10

(
4.37f
1000

+ 1
)

. (6) 

The SincNet layer then aims to learn better parameters for these 
bandpass filters within the neural network framework. SincNet offers 
various advantages over the standard CNN, such as fast convergence, 
less number of parameters, computational efficiency, and interpret-
ability of the convolutional layer [11]. 

2.2.2. BiGRU 
The GRU learns dependencies between time steps in sequence data. 

At time step t, the hidden state of the GRU layer contains the output of 
the layer for this time step. Information is added or removed from the 
state at each time step using gates. The hidden state of the GRU layer is 
controlled by the reset gate r, update gate z, and the candidate state ĥ. 
The input weights W, recurrent weights R, and bias b, are the learnable 
weights of the GRU. The input and recurrent weight matrices are con-
catenations of each component (r, z, and ĥ) and the bias vector depends 
on whether the reset gate is applied to hidden state before or after matrix 
multiplication. 

The hidden state at time step t is given as 

ht = (1 − zt) ⊙ ĥt + zt ⊙ ht− 1 (7)  

and the components (r, z, and ̂h) at time step t depend on the mode of the 
reset gate. This work makes use of two GRUs to learn sequence infor-
mation in both directions, backwards and forwards. 

2.2.3. Weighted cross-entropy loss 
The number of cough frames in the dataset is much less than the 

number of non-cough frames. During training, this class imbalance is 
accounted for using a weighted cross-entropy loss in the classification 
layer as 

L = −
1
N

∑N

n=1

∑K

i=1
witnilnyni (8)  

where N is the number of samples, K the number of classes, w the class 
weights, t represents the training targets, and y the prediction scores of 
the softmax function. 

2.2.4. Network training 
The adaptive moment estimation optimization algorithm [20] is 

used as the solver for the training network and the training parameters 
are tuned using a simple grid search. The final setting for the initial learn 
rate is 0.0001, mini batch size is 4, and maximum number of epochs is 
10. The network was implemented in MATLAB R2022a and trained 
using a single NVIDIA V100 Tensor Core GPU. The training stops after 
the maximum number of epochs is reached. 

2.3. Evaluation metrics 

The evaluation of the proposed cough detection method is based on 
frame classification, similar to [9]. The performance is measured using 
sensitivity, specificity, and accuracy, where sensitivity is the fraction of 
cough frames that are correctly classified, specificity is the fraction of 
non-cough frames that are correctly classified, and accuracy is the 
fraction of all frames (cough and non-cough) that are correctly classi-
fied. The area under the curve (AUC) of the receiver operating 

characteristic (ROC) curve is also used, as a single measure of classifi-
cation performance. In addition, F-score and the equal error rate (EER) 
are used as evaluation metrics. F-score (or F1 score) is the harmonic 
mean of the precision and recall, where precision is the number of cough 
frames that are correctly classified divided by the number of all frames 
classified as cough and recall is the same as sensitivity. For calculating 
the sensitivity, specificity, accuracy, and the F-score, the optimal 
threshold on the ROC curve is determined as the point on the ROC curve 
that minimizes the distance to the point (0,1). The EER is the value at 
which the false negative rate and the false positive rate are equal. For 
sensitivity, specificity, accuracy, AUC, and the F-score, a value of 1 in-
dicates ideal performance. The ideal value for EER is 0. 

3. Results 

3.1. Experimental setup 

Cough and non-cough frame classification is performed using three 
different techniques: (i) using handcrafted features and conventional 
classifiers, (ii) using convolutional neural networks, and (iii) using 
bidirectional GRU. The performance of the methods is evaluated in 
stratified 10-fold cross-validation on the training and validation set of 
300 recordings. That is, 30 recordings (15 cough recordings and 15 non- 
cough recordings) are used for validation and the remaining 270 re-
cordings (135 cough recordings and 135 non-cough recordings) for 
training in each fold. Cross-validation is used to tune the network pa-
rameters, described in Section 2.2.4. The network parameters are then 
fixed and the network is trained on all the 300 recordings from the 
training and validation set and evaluated on the unseen test set of 100 
recordings. Cross-validation and test results are presented for all clas-
sification methods considered in this work. 

3.2. Results using MFCCs and baseline classifiers 

The results using mel-frequency cepstral coefficients (MFCCs) and 
baseline classifiers are presented first. MFCCs are a commonly used 
feature in audio classification tasks, including cough detection as seen in 
[4,6,7,9]. As in [9], 13 MFCCs are extracted in each frame. Additionally, 
the first and second derivatives of the coefficients are computed [21], 
resulting in a 39 dimensional feature vector in each frame. Four baseline 
classifiers are used for classification of the 39-dimensional MFCC feature 
set. These are logistic regression (LR), naive Bayes (NB), random forest 
(RF), and support vector machine (SVM). 

The cross-validation results for cough and non-cough classification 
using MFCCs and the four baseline classifiers are given in Table 2. An 
accuracy of 0.8361 (AUC = 0.9187) is achieved using the LR classifier. 
This reduces to an accuracy of 0.7473 (AUC = 0.8390) using NB, which 
has the lowest classification accuracy and AUC of the four baseline 
classifiers. Using the RF classifier results in an accuracy of 0.8583 (AUC 
= 0.9393). With an accuracy of 0.8698 (AUC = 0.9424), SVM yields 
marginally better classification performance than RF and the highest 
accuracy and AUC of the four baseline classifiers. 

The test results for cough and non-cough classification using MFCCs 
and the four baseline classifiers is presented in Table 3. The results show 
a similar trend to the cross-validation results and the highest accuracy of 
0.8678 and AUC of 0.9371 is once again achieved using SVM. The 
relative change in the AUC is within 1% for all classifiers except NB 
which has possibly benefited from the additional training data. 

3.3. Results using convolutional neural networks 

The classification results using CNNs are presented next using the 
same cross-validation approach as the baseline methods in Section 3.2. 
Two types of CNNs are considered: 2-D CNN and 1-D CNN. The 2-D CNN 
classification approach is based on [9] and forms another baseline 
method. Each frame is converted to a 64 × 16 spectrogram image using 
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STFT. This spectrogram image forms input to a 2-D CNN. The archi-
tecture of the 2-D CNN is as described in [9]. The 1-D CNN is the Sinc-
Net, the input to which are raw audio sequences. While in the original 
SincNet the frequencies and bandwidth of the sinc functions are 
initialized as equally spaced on the mel scale, this work also experiments 
with the ERB scale as described in Section 2.2.1. 

The cross-validation results for cough and non-cough classification 
using CNNs are given in Table 4. The Spectrogram + CNN approach of 
[9] yields an accuracy of 0.8818 (AUC = 0.9521). This improves to an 
accuracy of 0.8829 (AUC = 0.9584) with the SincNet when the sinc 
functions are initialized using the mel scale. This further improves to an 
accuracy of 0.8906 (AUC = 0.9572) when the sinc functions in the 
SincNet are initialized using the ERB scale. This trend is also observed in 
the test results, Table 5, with the SincNet (ERB) classification method 
achieving the highest accuracy and AUC of 0.8721 and 0.9467, 
respectively. Also, the relative change in the AUC is within 1.5% for all 
three methods. 

As such, the CNN methods produce higher classification accuracy 
and AUC than the conventional feature engineering and classification 
methods the results for which are given in Tables 2 and 3. In addition, 
the proposed SincNet, with sinc functions initialized using the ERB scale, 
produces the highest classification accuracy and AUC. While it performs 
only marginally better than the original SincNet [11], the method could 
be considered more explainable with the ERB. Also, it outperforms 
MFCC + SVM, the baseline classification method with the highest ac-
curacy and AUC. 

3.4. Results using bidirectional GRU 

Finally, classification results using the BiGRU are presented. The 
BiGRU is used with the three different methods reported in Sections 3.2 
and 3.3, i.e., with the MFCC feature set, the Spectrogram + CNN 
method, and the Raw Signal + SincNet method. The Raw Signal +
SincNet-BiGRU architecture is illustrated in Fig. 2. It is essentially an 
extension of the SincNet classification method used in Section 3.3 but 
with the introduction of the BiGRU. 

The cross-validation results for cough and non-cough classification 
using BiGRU are given in Table 6. The MFCC + BiGRU classification 
approach achieves an accuracy of 0.9413 (AUC = 0.9742). This is a 
relative improvement of 8.23% in accuracy and 3.37% in AUC over the 

MFCC + SVM classification method, which produced the highest accu-
racy and AUC using the baseline classifiers (Table 2). 

The Spectrogram + CNN-BiGRU method achieves an accuracy of 
0.9428 (AUC = 0.9845). This is a relative improvement of 6.93% in 
accuracy and 3.40% in AUC over the Spectrogram + CNN cross- 
validation results (Table 4). 

An accuracy of 0.9504 and AUC of 0.9895 is achieved using the Raw 
Signal + SincNet-BiGRU classification method when the sinc functions 
are initialized using the mel scale. These are better than the Spectro-
gram + CNN-BiGRU classification method and a relative improvement 
of 7.64% in accuracy and 3.24% in AUC over the corresponding Raw 
Signal + SincNet classification method. 

Finally, the proposed Raw Signal + SincNet-BiGRU classification 
method, where the sinc functions are initialized using the ERB scale, 
achieves an accuracy of 0.9509 (AUC = 0.9903). This is a relative 
improvement of 6.77% in accuracy and 3.45% in AUC over the corre-
sponding Raw Signal + SincNet classification method. These are the 
highest accuracy and AUC of all the classification methods considered in 
this work. 

In the multistage process in cough sound detection in [9], the silent 
frames are removed before classification. Since the method proposed in 
this work uses an end-to-end approach, silent and non-silent frames are 
all classified at once. It’s possible that classifying silent frames as non- 
cough would be a relatively easy task which can overestimate the re-
sults in this work. In this regard, the performance of the Raw Signal +
SincNet-BiGRU (ERB scale) classification method is reanalyzed after 
removing the silent frames and then recomputing the classification re-
sults. It results in a sensitivity of 0.9317, specificity of 0.9291, accuracy 
of 0.9297, AUC of 0.9799, F-score of 0.8573, and EER of 0.0698. As 
such, the proposed method demonstrates robustness in accurately 
detecting both silent and non-silent non-cough frames. 

The test results in Table 7 also demonstrate a similar trend to the 
cross-validation results with the highest accuracy of 0.9496 and AUC of 
0.9866 using the proposed Raw Signal + SincNet-BiGRU (ERB scale) 
classification method. In addition, the relative change in the AUC from 
cross-validation to test is within 0.5% indicating good generalizability of 
the classification networks. 

Fig. 3 shows the frequency response of 6 of the 80 filters as learned 
by the proposed SincNet-BiGRU (ERB scale) network. These 6 filters 
have equally spaced indices in the interval of 1 to 80. The filter shapes 

Table 2 
Cross-validation results for cough and non-cough sequences using MFCC and various baseline classifiers.  

Feature/Input Classifier Sensitivity Specificity Accuracy AUC F1 EER 

MFCC LR  0.8280  0.8371  0.8361  0.9187  0.5259  0.1691 
MFCC NB  0.8393  0.7360  0.7473  0.8390  0.4217  0.2304 
MFCC RF  0.8607  0.8580  0.8583  0.9393  0.5714  0.1409 
MFCC SVM  0.8602  0.8709  0.8698  0.9424  0.5919  0.1353  

Table 3 
Test results for cough and non-cough sequences using MFCC and various baseline classifiers.  

Feature/Input Classifier Sensitivity Specificity Accuracy AUC F1 EER 

MFCC LR  0.8694  0.8160  0.8239  0.9201  0.5932  0.1626 
MFCC NB  0.8781  0.7694  0.7855  0.8698  0.5473  0.2005 
MFCC RF  0.8793  0.8295  0.8369  0.9308  0.6141  0.1497 
MFCC SVM  0.8592  0.8693  0.8678  0.9371  0.6574  0.1362  

Table 4 
Cross-validation results for cough and non-cough sequences using convolutional neural networks.  

Feature/Input Classifier Sensitivity Specificity Accuracy AUC F1 EER 

Spectrogram CNN  0.8834  0.8815  0.8818  0.9521  0.6212  0.1179 
Raw Signal SincNet (Mel)  0.9045  0.8802  0.8829  0.9584  0.6290  0.1093 
Raw Signal SincNet (ERB)  0.8966  0.8899  0.8906  0.9572  0.6429  0.1077  
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are narrow and sharp at low frequency values and the spacing of the 
filters is nonlinear. The spectrogram representations for the first cough 
and non-cough sound events from Fig. 1(a) and (b) are illustrated in 
Fig. 4(a) and (b), respectively. Both the spectrograms contain greater 
spectral content at low frequency values and the filters learned by the 
proposed network allow for finer frequency characterization at low 
frequency values. 

Next, the SincNet-BiGRU predictions for the cough and non-cough 
recordings in the test set are investigated using t-distributed stochastic 

neighbor embedding (t-SNE) [22]. t-SNE maps high-dimensional data, 
network activations of the BiGRU, in this case, to two dimensions. The t- 
SNE visualization, Fig. 5, shows that data frames from the cough and 
non-cough classes form clearly visible clusters. This implies that the 
SincNet-BiGRU network understands the data frames and its classes and 
is able to differentiate them. 

Table 5 
Test results for cough and non-cough sequences using convolutional neural networks.  

Feature/Input Classifier Sensitivity Specificity Accuracy AUC F1 EER 

Spectrogram CNN  0.8919  0.8599  0.8646  0.9418  0.6605  0.1290 
Raw Signal SincNet (Mel)  0.8915  0.8614  0.8659  0.9442  0.6625  0.1279 
Raw Signal SincNet (ERB)  0.8947  0.8682  0.8721  0.9467  0.6738  0.1231  

Table 6 
Cross-validation results for cough and non-cough sequences using bidirectional gated recurrent unit.  

Feature/Input Classifier Sensitivity Specificity Accuracy AUC F1 EER 

MFCC BiGRU  0.9363  0.9420  0.9413  0.9742  0.7780  0.0612 
Spectrogram CNN-BiGRU  0.9486  0.9421  0.9428  0.9845  0.7846  0.0550 
Raw Signal SincNet-BiGRU (Mel)  0.9565  0.9496  0.9504  0.9895  0.8089  0.0478 
Raw Signal SincNet-BiGRU (ERB)  0.9590  0.9499  0.9509  0.9903  0.8109  0.0466  

Table 7 
Test results for cough and non-cough sequences using bidirectional gated recurrent unit.  

Feature/Input Classifier Sensitivity Specificity Accuracy AUC F1 EER 

MFCC BiGRU  0.9448  0.9135  0.9181  0.9740  0.7731  0.0758 
Spectrogram CNN-BiGRU  0.9471  0.9325  0.9346  0.9829  0.8106  0.0616 
Raw Signal SincNet-BiGRU (Mel)  0.9546  0.9451  0.9465  0.9854  0.8406  0.0518 
Raw Signal SincNet-BiGRU (ERB)  0.9491  0.9497  0.9496  0.9866  0.8476  0.0509  

Fig. 3. Frequency response of 6 of the 80 filters learned by the proposed SincNet-BiGRU. The filters have equally spaced indices in the interval 1 to 80.  
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4. Discussion 

A method for detection of cough and non-cough frames using raw 
audio signal and deep learning techniques is presented in this paper. The 
deep learning method proposed in this work in based on the SincNet 
[11]. However, two improvements are proposed to the SincNet archi-
tecture. Firstly, the sinc filters are initialized on the ERB scale in the first 
layer. This first layer learns the spectral content of the cough and non- 
cough frames. As shown in Fig. 4, both signals exhibit greater spectral 
content at low frequencies compared to high frequencies. The ERB ap-
proximates the bandwidths of the filters in human hearing with greater 
frequency characterization at low frequencies (Fig. 3), making it ideal 
for this work. Secondly, the proposed SincNet (ERB) is combined with 
GRUs to learn the temporal dependencies between the frames. In 
particular, bidirectional GRUs are used to learn the temporal de-
pendencies in both the forward and backward directions. 

The performance of the proposed method is compared against MFCC 
features with four classifiers: LR, NB, RF, and SVM (results in Table 2 
and 3). The Spectrogram-CNN [9] and SincNet (Mel) [11] methods are 
also used as baseline methods (results in Table 4 and 5). These baseline 
methods are implemented using the same dataset and experimental 
setup as the proposed method. The proposed Raw Signal + SincNet- 
BiGRU method outperforms the baseline methods which include hand-
crafted features, conventional classifiers, and CNN classification of 
time–frequency (spectrogram) image as proposed in [9]. 

In [23], a summary of different cough detection approaches is pro-
vided in Table 2, with an accuracy of 99.91% reported in [24] and 97% 
reported in [25]. On further analysis, it is noted that the work reported 
in [25] is not a cough detection task; it studies classification of COVID- 
19 coughs against healthy coughs and the coughs are detected using 
PRAAT software. Similarly, [24] looks at classification of productive 
cough, non-productive cough, and ambient sounds, with deep learning 
performed on data from only 8 recordings. This current study looks at 
automatic detection of cough sounds against non-cough sounds with 
training and validation on data from 300 recordings with an additional 
100 recordings for testing only. 

5. Conclusion 

Cough is one of the most common presenting conditions in primary 
care [26]. There has been an increased uptake of virtual healthcare 
during COVID-19 and it is largely expected to continue [27]. Objective 
cough sound assessment using smartphone technology during virtual 
consultation can aid the physician in diagnosis of respiratory diseases 
and the proposed cough sound detection method can be useful in this 
regard as it is an important step of this process. 

In addition, recently, many research groups around the world have 
been studying the cough sound of COVID-19 and several of these studies 
are reliant on crowdsourced data. Deep learning classification methods 
have outperformed various conventional classification methods in 
medical applications but require large datasets to train the deep learning 
model. While crowdsourced data can help in quickly collating large 
datasets for this purpose, crowdsourced data can be noisy and unreli-
able. Analysis of one COVID-19 dataset shows thousands of audio re-
cordings possibly don’t even contain cough sounds [13]. As such, the 
proposed method can be useful in detecting and segmenting cough 
sounds and also in discarding audio recordings that do not contain the 
sound of cough. 

The dataset used in this work is crowdsourced which means varying 
experimental setup, such as the recordings are likely made using 
different devices with varying hardware and software characteristics, 
different environments presenting different background noise, and 
different microphone positioning. All of these can affect the recorded 
sound of cough. The proposed cough detection method achieves an ac-
curacy of 0.9496 (AUC = 0.9866) on an unseen test dataset despite these 
challenges. 

Fig. 4. Spectrogram representation of (a) a cough signal (first cough signal 
between 3.38 and 3.76 s from Fig. 1(a)) and (b) a non-cough signal (first speech 
signal between 1.02 and 1.72 s from Fig. 1(b)). 
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Fig. 5. t-SNE visualization of cough vs non-cough classification network 
activations. 
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