Detecting Childhood Pneumonia Using Handcrafted and Deep Learning
Cough Sound Features and Multilayer Perceptron*

Roneel V. Sharan!, Kun Qian?, and Yoshiharu Yamamoto?

Abstract—Pneumonia is one of the leading causes of mor-
bidity and mortality in children. This is especially true in
resource poor regions lacking diagnostic facilities, bringing
about the need for rapid diagnostic tests for pneumonia. Cough
is a common symptom of acute respiratory diseases, including
pneumonia, and the sound of cough can be indicative of the
pathological variations caused by respiratory infections. As
such, in this paper we study objective cough sound evalua-
tion for differentiating between pneumonia and other acute
respiratory diseases. We use a dataset of 491 cough sounds
from 173 children diagnosed either as having pneumonia or
other acute respiratory diseases. We extract features which
describe the temporal, spectral, and cepstral characteristics of
the cough sound. These features are combined with feature
embeddings from a pretrained deep learning network and used
to train a multilayer perceptron for classification. The proposed
method achieves a sensitivity and specificity of 84% and 73%
respectively in differentiating between pneumonia and other
acute respiratory diseases using cough sounds alone.

I. INTRODUCTION

Pneumonia is the single largest infectious cause of death
in children worldwide, accounting for 740,180 (14%) of all
deaths in children under 5 years old in 2019 [1]. While
pneumonia affects children all over the world, the vast
majority of these deaths are in resource poor regions, such as
southern Asia and sub-Saharan Africa. Indigenous children
in developed countries are also disproportionately affected
by pneumonia [2], [3].

The symptoms of pneumonia can include cough, breathing
difficulty, fever, chest pain, amongst others. These symptoms
can be used by the clinical algorithm developed by the World
Health Organization to classify pneumonia in resource poor
regions. However, other acute respiratory diseases can also
cause similar symptoms, resulting in poor specificity of the
algorithm and over prescription of antibiotics used for the
treatment of pneumonia [4]. Chest radiography can be used
for differential diagnosis [5] but it is not readily available in
resource poor regions. This brings about the need for rapid
diagnostic tests for pneumonia.
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Cough is a common symptom of acute respiratory dis-
eases. Cough is comprised of three phases, inspiratory, com-
pressive, and expiratory, and it is a vital defensive mechanism
for lung health [6]. The sound of cough is associated with
cough physiology. Different respiratory diseases can affect
different part of the respiratory system. These pathological
variations can be reflected in the sound of cough [7] and,
therefore, be indicative of the respiratory disease [8], [9].

Despite its plausibility, the sound of cough has rarely been
studied in differentiating pneumonia from other acute respi-
ratory diseases. Earlier works [4], [10] in detecting childhood
pneumonia using cough sound analysis use conventional
feature engineering and machine learning techniques, such
as the use of handcrafted features and logistic regression
classification. In addition, they employ a small number of
subjects and the cough classification model of [11], [12] is
reliant on clinical symptoms.

In this work, we propose a method to detect childhood
pneumonia using only cough sounds. Similar to [4], [10],
[11], [12], our work makes use of various handcrafted fea-
tures, capturing different characteristics of the cough sound.
In addition, our work makes the following contributions
when compared to these earlier works. Firstly, we use a
set of deep learning features extracted from a pretrained
audio classification network. Secondly, we train a multilayer
perceptron on the combined handcrafted and deep learning
feature set to differentiate between pneumonia and non-
pneumonia cough sounds. Multilayer perceptron is a fully
connected class of feedforward artificial neural network that
has the ability to learn complex relationships between the
input features so that they can be combined into higher-
order representations. The proposed method is evaluated on
a clinically verified dataset of cough sounds from children
diagnosed as having pneumonia or other acute respiratory
diseases. The dataset has almost twice as many subjects
compared to [4], [10].

II. MATERIALS AND METHODS
A. Dataset

In this work, we use a dataset of cough sound record-
ings collected at West China Second University Hospital
of Sichuan University [13]. An overview of the dataset
is provided in Table I. The dataset has audio recordings
of cough sounds from 173 children with acute respiratory
diseases which can be grouped into two classes: pneumonia
and non-pneumonia. The pneumonia class has 82 subjects
(43 male and 39 female) of which 55 subjects are diagnosed
as having pneumonia, 23 subjects as bronchopneumonia, and
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TABLE I
OVERVIEW OF THE DATASET USED IN THIS WORK

Disease Group
Pneumonia | Non- Overall
Pneumonia

Number of subjects 82 91 173
Total duration (s) 372.10 320.61 692.71
Number of coughs 268 223 491
Gender (male:female) | 43:39 51:40 94:79
Age range (years) 0-11

4 subjects as lobar pneumonia. The non-pneumonia class has
91 subjects (51 male and 40 female) of which 80 subjects
have acute bronchitis, 6 subjects have acute bronchiolitis,
and 5 subjects have acute asthmatic bronchitis. The disease
diagnosis was done according to [14]. The children are aged
0 to 11 years with majority aged one year or less.

The audio recordings are available in the MP3 file format
at a sampling frequency of 44.1 kHz. The recordings are
made in a hospital environment and contain background
noises, such as speech and sounds from medical devices.
The total duration of pneumonia recordings is 372.10 sec-
onds and 320.61 seconds for non-pneumonia recordings.
All the recordings were manually screened for use in this
work. Two pneumonia recordings were excluded as they
were determined not to contain any cough sound. Another
pneumonia recording was excluded because it could not be
determined if the respiratory sounds from the infant were
cough or non-cough. Each of the remaining recordings have
one or more cough sounds which are manually segmented
for analysis in this work. This gives us a total of 268 cough
sounds in the pneumonia class and 223 cough sounds in
the non-pneumonia class. Illustration of pneumonia and non-
pneumonia (bronchitis) cough waveforms along with their
spectrogram representations are given in Fig. 1.

B. Proposed Method

An overview of the proposed method in classifying pneu-
monia and non-pneumonia cough sounds is illustrated in Fig.
2. All recordings are converted to the WAV file format and
the cough signals in each recording are manually segmented
to determine the start and end point of each cough. The
manually segmented cough signals are processed to extract
two sets of features [15]: a set of handcrafted features and
a set of transfer learning-driven deep learning features.

Handcrafted Features: This work utilizes two subsets of
handcrafted features: cepstral and temporal and spectral.
In computing the handcrafted features, each cough signal
is divided into frames of 25 milliseconds with an overlap
of 15 milliseconds between adjacent frames. The cepstral
features are mel-frequency cepstral coefficients (MFCCs)
[16], a widely used feature in audio classification tasks that
utilizes frequency scales based on the auditory perception.
We compute 13 MFCCs and the first and second derivatives
of these coefficients [17] in each frame, resulting in a matrix
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Fig. 1. Waveform of cough sounds for (a) pneumonia and (b) bronchitis,
and their spectrogram representation showing the frequency characteristics
in (c) and (d) respectively.

of size 39xn, for each cough, where n. is the number of
frames in the ¢ cough. These raw features are represented
using the mean and standard deviation statistical measures.
If the recording has only one cough, these statistics are
computed across all the frames in the cough. If the recording
has multiple coughs, these statistics are computed across
all the frames from all the coughs. These result in a 78-
dimensional MFCC feature subset for each recording.

The second handcrafted feature subset has 15 features
which capture the temporal and spectral characteristics of
the cough signal, computed in each frame similar to MFCCs.
These are the zero-crossing rate, short-time energy, spectral
centroid, spectral crest, spectral decrease, spectral entropy,
spectral flatness, spectral flux, spectral kurtosis, spectral
roll-off point, spectral skewness, spectral slope, spectral
spread, pitch, and harmonic ratio [18], [19]. These are once
again represented using the mean and standard deviation
statistical measures, resulting in a 30-dimensional temporal
and spectral feature subset for each recording.

Deep Learning Features: The deep learning feature set has
128 VGGish feature embeddings from each cough signal.
These are extracted using a pretrained convolutional neural
network for audio classification [20]. The VGGish is inspired
by the popular VGG networks in image classification. The
VGGish has been trained on a large YouTube audio dataset
of 128-dimensional embeddings. In computing the VGGish
features, each cough signal is zero-padded or cropped to
0.975 seconds and transformed into a 94x64 log mel-
spectrogram. The mel-spectrogram time-frequency represen-
tation forms input to the VGGish network for extracting
the feature embeddings. In the event a recording contains
multiple coughs, the feature embeddings are averaged across
the coughs.

The combined feature vector is, therefore, 236-
dimensional (78 MFCC features, 30 temporal and spectral
features, and 128 VGGish features). These cough features
are used for binary classification (pneumonia Vs non-
pneumonia) using the following classifiers: random forest
(RF), support vector machine (SVM), and multilayer
perceptron (MLP). For the RF and SVM classifiers, the
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discriminative features are identified using #-test and elastic
net [21], while the full feature vector is used as input to
the MLP classifier. The MLP has two hidden layers. Each
hidden layer has 256 neurons and the rectified linear unit
activation function. The network is trained using adaptive
moment estimation.

C. Evaluation Metrics

The classification performance is measured using sensitiv-
ity, specificity, accuracy, and F; score computed as

Sensitivity = __rr (1)
TP+ FN

Specificity = % (2)

Accuracy = 75— ;ﬁ i ?; TFN 3)

A =i ()

T TP+ FP+FN

where TP is the number of true positives, TN is the number
of true negatives, FP is the number of false positives, and FN
is the number of false negatives. The positive and negative
classes are pneumonia and non-pneumonia, respectively. The
optimal threshold on the ROC curve is selected such that
sensitivity is greater than specificity by at least 10 percentage
points, that is, prioritizing detection of pneumonia over non-
pneumonia. The area under the curve (AUC) of the receiver
operating characteristic (ROC) curve is also used, as a single
measure of classification performance.

III. EXPERIMENTAL EVALUATION
A. Experimental Setup

The performance of the proposed pneumonia vs non-
pneumonia cough sound classification method is evaluated
in leave-one-out cross-validation whereby features from one
subject are used for testing and the features from the remain-
ing subjects are used for training. This procedure is repeated
such that each subject is used to test the classification model
once. In each fold, the features are normalized using z-score
normalization. For the RF and SVM classifiers, we present
results using the feature selection method that produced the
highest overall results. With the #-test, the discriminative
features are selected using a p-value threshold of 0.05. With
the elastic net, the discriminative features are selected using
the minimum cross-validated mean square error. For both

Non-pneumonia

Overview of the proposed method in pneumonia vs non-pneumonia cough sound classification.

feature selection methods, the discriminative features in each
fold are identified on the training data. The results for all the
classifiers are presented using the handcrafted feature set, the
deep learning feature set, and the combined feature set.

B. Cough Classification Results

The results for pneumonia vs non-pneumonia cough sound
classification are presented in Table II. The RF classifier
achieves best results on the handcrafted and deep learning
feature sets when the features are selected using 7-test while
the elastic net method of feature selection yields the best
results on the combined feature set. An accuracy of 0.6647
and F; of 0.6705 is achieved with the handcrafted features.
With an accuracy of 0.6529 and F; of 0.6550, there is a slight
drop in the classification performance with the DL features.
However, with an accuracy of 0.6882 and F; of 0.6901, the
best classification results are achieved using the combined
feature set.

With SVM classification, the #-test method of feature
selection produces the best results on all three feature sets.
Similar to the trend with the RF classifier, the results using
the deep learning features are slightly lower than using
handcrafted features. However, with an accuracy and F; of
0.7059, the best results using SVM are with the combined
feature set, same as what is observed using the RF classifier.

All performance metrics are seen to improve when using
the MLP classifier. On the handcrafted feature set, the
MLP classifier achieves an accuracy of 0.7412, a relative
improvement of 11.51% over RF and 7.70% over SVM, and
F1 of 0.7412, a relative improvement of 10.54% over RF
and 7.40% over SVM. On the deep learning feature set, the
MLP classifier achieves an accuracy of 0.6882, a relative
improvement of 5.41% over RF and 7.33% over SVM, and
F; of 0.6901, a relative improvement of 5.36% over RF and
7.27% over SVM. On the combined feature set, the accuracy
using MLP is 0.7765, a relative improvement of 12.83% over
RF and 10.00% over SVM, and F; is 0.7765, a relative
improvement of 12.52% over RF and 10.00% over SVM.
As such, the MLP classifier outperforms the RF and SVM
classifiers and, once again, the best classification results are
achieved on the combined feature set.

Box plot of the most significant feature (lowest p-value
using t-test) from the handcrafted feature set and deep
learning feature set are shown in Fig. 3. VGGish feature
embedding 94 is determined to be the most significant feature



PNEUMONIA VS NON-PNEUMONIA COUGH SOUND CLASSIFICATION RESULTS

TABLE I

Feature Set Feature Selection Method | Classifier — .Cla§s1ﬁcat10n Results
Sensitivity | Specificity | Accuracy AUC F
Handcrafted features T-Test 0.7342 0.6044 0.6647 0.6769 | 0.6705
DL features T-Test RF 0.7089 0.6044 0.6529 0.7251 | 0.6550
Handcrafted + DL features Elastic Net 0.7468 0.6374 0.6882 0.7426 | 0.6901
Handcrafted features T-Test 0.7468 0.6374 0.6882 0.7325 | 0.6901
DL features T-Test SVM 0.6962 0.5934 0.6412 0.7068 | 0.6433
Handcrafted + DL features T-Test 0.7595 0.6593 0.7059 0.7749 | 0.7059
Handcrafted features - 0.7975 0.6923 0.7412 0.8064 | 0.7412
DL features - MLP 0.7468 0.6374 0.6882 0.7311 | 0.6901
Handcrafted + DL features - 0.8354 0.7253 0.7765 0.8208 | 0.7765
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Fig. 3. Box plot of the most significant feature (lowest p-value) from each
feature set.

followed by the standard deviation of the 1% mel-frequency
cepstral coefficient.

IV. CONCLUSION

This work proposes a method for classifying pneumonia
and non-pneumonia cough sounds using handcrafted and
deep learning features, and MLP. With a sensitivity of
0.8354, specificity of 0.7253, accuracy of 0.7765, AUC of
0.8208, and F; of 0.7765, these are the best results of all
the feature sets and classifiers considered in this work. Our
work, however, has some limitations. While our dataset has a
greater number of subjects than other similar works, such as
[4], [10], the non-pneumonia group is primarily comprised
of bronchitis subjects. In the future, we plan to evaluate our
method with more cough recordings from other pediatric
acute respiratory diseases. In addition, the cough sounds in
this work are manually segmented. In the future, we aim to
evaluate our algorithms with automatically segmented cough
sounds, such as using neural networks [8], [15]. Automatic
cough segmentation is an important step in achieving a fully
automated cough sound-based pneumonia detection system.
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