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Abstract— Objective cough sound evaluation is useful in the
diagnosis and management of respiratory diseases. However,
the performance of cough sound analysis models can degrade
in the presence of background noises common in everyday
environments. This brings forward the need for cough sound
denoising. This work utilizes a method for denoising cough
sound recordings using signal processing and machine learning
techniques, inspired by research in the field of speech enhance-
ment. It uses supervised learning to find a mapping between
the noisy and clean spectra of cough sound signals using
a fully connected feed-forward neural network. The method
is validated on a dataset of 300 manually annotated cough
sound recordings corrupted with babble noise. The effect of
various signal processing and neural network parameters on
denoising performance is investigated. The method is shown to
improve cough sound quality and intelligibility and outperform
conventional denoising methods.

I. INTRODUCTION

Cough is one of the most common and familiar symptoms
of various respiratory diseases, such as pertussis, pneumonia,
and COVID-19. In clinical practice, cough assessment can
be performed using various methods, such as visual analogue
scales, verbal descriptive scores, and quality-of-life ques-
tionnaires [1]. However, these are subjective assessments,
depending on the patient’s attention to the symptoms and the
understanding and interpretation of the cough by a physician.

Objective cough sound analysis methods, such as cough
frequency measurement using cough monitors [2] and
smartphone-based artificial intelligence algorithms for cough
sound assessment [3], are promising tools that can aid
medical practitioners in the diagnosis of respiratory diseases.
There is also the possibility of using cough sound analysis
as a screening tool for COVID-19 [4]. Since the outbreak
of COVID-19, there has been a substantial increase in tele-
health consultations [5], where such objective cough sound
assessment technologies can be invaluable.

However, the presence of everyday background noise can
degrade the quality of the cough sound signals and, therefore,
aggravate objective cough sound assessment. Cough signal
denoising is, therefore, important before objective cough
sound analysis can be performed. Cough signal denoising
has, however, received limited attention, although denoising
audio signals in other applications, speech analysis, in par-
ticular, has been ongoing for decades. As speech and cough
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share similarities in the generation process [6], our work is
inspired by prior speech denoising and enhancement studies.

Conventional speech enhancement methods, such as
Wiener filtering and spectral subtraction, have several limita-
tions, like dependence on the nature of the background noise
and statistical properties of the target signal [7]. In recent
years, data-driven methods, such as deep neural networks
[8], [9], have become increasingly popular for speech en-
hancement. This is due to their effectiveness in capturing the
nonlinear relationship between the clean and noisy speech,
including in non-stationary noisy environments, where the
performance of conventional denoising methods degrades.
Our work is inspired by these studies which focused on
mapping between noisy and clean speech spectra for speech
enhancement using neural networks.

In this work, we use a deep neural network technique to
denoise the cough signals for enhancing the quality and intel-
ligibility of the cough signals obtained from a crowdsourced
dataset. In particular, we study the use of a fully connected
feed-forward neural network (FNN) for cough denoising. The
method is evaluated using a dataset of manually annotated
cough recordings. We study the effect of various signal
processing and neural network parameters on the denoising
performance. The performance of the neural network-based
cough denoising method is also compared against a con-
ventional denoising method. The results show enhancement
in cough sound quality and intelligibility, and, therefore,
the denoising method has the potential to improve objective
cough sound analysis in the presence of background noise.

II. MATERIALS AND METHODS
A. Dataset

This work exploits a publicly available COUGHVID
dataset [10]. The COUGHVID dataset was crowdsourced and
contains 27,550 audio recordings of cough sounds. The data
has been collected through a web application for a study of
COVID-19 cough sound. The cough recordings have been
submitted by subjects, who also self-reported additional data,
such as age, gender, COVID-19 status, and symptoms.

For denoising the cough recordings, this work considered
a subset of 200 cough recordings from the COUGHVID
dataset, which are used in [11]. These recordings were
manually screened to eliminate those containing non-cough
sounds or background noises. This resulted in 114 usable
recordings. In addition, we screened recordings with a high
probability of cough, as identified by [11], for additional
186 recordings, resulting in a total of 300 cough recordings
exploited in this work. These recordings were downsampled
to 16 kHz.
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Fig. 1. An overview of the supervised deep learning method used for denoising cough sound audio recordings. The magnitude spectra of the noisy and
clean cough recordings are the predictor and target inputs of the deep learning network, respectively, and the denoised spectra is the output.

TABLE I
OVERVIEW OF THE DATASET USED IN THIS WORK

Description Value
Number of recordings 300
Average duration (seconds) 9.35±1.36
Number of frames (256 points, 75% overlap) 700,594
Gender (male / female / unknown) 169/90/41
Average age (years) 39.24±14.62

A descriptive characterization of the 300 recordings used
in this work is provided in Table I. The average duration of
the recordings is 9.35±1.36 seconds. The recordings provide
a total of 700,594 frames of length 256 points with a 75%
overlap between adjacent frames. Of the 300 subjects, 169
are male, 90 are female, and 41 did not report their gender.
The average age of the participants is 39.24±14.62 years.

B. Cough Denoising Method

Fig. 1 provides an overview of the cough denoising
method used in this work. The noisy cough recordings are
obtained by adding speech babble noise, available from the
NOISEX-92 database, to the clean cough recordings. In
similar to [8] and [9], noise is added at a signal-to-noise
ratio (SNR) of 0 dB. The magnitude spectra of the noisy and
clean cough recordings form the predictor and target of the
FNN, respectively. The output of the FNN is the magnitude
spectrum of the denoised signal. The FNN in this case is a
regression network that uses the predictor input to minimize
the mean square error between the output of the network and
the input (target) [8], [9].

The cough recordings are transformed to the frequency
domain using a short-time Fourier transform (STFT), with
a window length of 256 points, an overlap of 75% between
adjacent frames, and a Hamming window. The size of the
Fourier transform is the same as the window length. The
size of the spectral vector is reduced to 129 by dropping
the symmetric half. The denoised cough signal is obtained
by converting the denoised spectra to the time domain using
the phase of noisy signal and inverse STFT [8].

An overview of the architecture of the FNN used in this

Fig. 2. An overview of the FNN architecture. The FNN has an input layer,
two fully connected layers, and an output layer.

work is shown in Fig. 2. The size of the predictor input
is 129×8, as the input is reduced to 129 by removing
the symmetric half and it consists of 8 consecutive noisy
STFT vectors, such that the prediction of each STFT output
(129×1) is based on the current noisy STFT vector and the
previous 7 STFT vectors. The predictor matrices and target
vectors are normalized using their mean and standard devia-
tion values. The input layer is followed by 2 fully connected
layers, each with 1024 neurons. Each fully connected layer
is followed by a batch normalization layer and a ReLU layer.
The output layers include a fully connected layer of size 129,
same as the target vector, and a regression layer. The network
is trained using the adaptive moment estimation algorithm
with an initial learning rate of 1× 10−3, mini batch size of
128, and maximum number of epochs of 3. In addition, we
use a learn rate drop factor and learn rate drop period of
0.9 and 1, respectively. The network training stops after the
maximum number of epochs is reached.

C. Setup and Metrics

The denoising experiments use all 300 cough recordings.
The performance of the denoising method is evaluated in
5-fold cross-validation, whereby frames from 60 recordings
are used for testing in each fold. Of the remaining 240
recordings, 90% are used for training and the remaining 10%
– for validation. We investigated the effect of various signal
processing and network parameters on the denoising perfor-
mance. The FNN was implemented in MATLAB R2022b
and trained on NVIDIA Quadro P6000 GPU.



Fig. 3. Denoising performance with different window lengths.

Fig. 4. Denoising performance with different window overlaps.

The signal-to-distortion ratio (SDR) [12] is used as the
main measure of the denoising performance. SDR measures
the error between the clean and denoised cough signals
in dB. It is a widely-used performance metric in audio
denoising tasks. In addition, since cough and speech share
similarities in the generation process, we use two common
speech intelligibility measures. These are short-time objec-
tive intelligibility (STOI) [13] and perceptual evaluation of
speech quality (PESQ) [14]. STOI is based on a correlation
coefficient between the temporal envelopes of the clean and
denoised signals in short-time overlapping segments, ranging
between 0 and 1. PESQ is an integration of two perceptual
analysis measurement systems with values in the range of 1
to 4.5, indicating the quality of the denoised signals. We
report the average value for these metrics, where higher
values indicate a better denoising performance.

III. RESULTS

We first compare the denoising performance with various
signal processing parameters. In particular, we compare
different window lengths and overlaps between adjacent
windows. Denoising performance with the window length
of 128, 256, 512, and 1024 points, and overlap of 75%
are compared in Fig. 3. The highest SDR is achieved at
the window length of 128, only slightly better than at 256
points. The STOI value is highest at the window length of
256 while the PESQ values at the window lengths of 128 and
256 are identical. As such, the denoising performance with
the window length of 256 yields comparable performance

Fig. 5. Denoising performance with different learning rates.

Fig. 6. Denoising performance with different network topologies.

to the window length of 128, with an advantage of using
fewer frames. We now fix the window length to 256 points
and measure the denoising performance with the window
overlaps of 25%, 50%, and 75%. The denoising performance
in Fig. 4 shows that the window overlap of 75% outperforms
the 25% and 50% overlaps for all the performance metrics.

Next, we investigate the effect of initial learning rate and
network topology on the denoising performance of FNN. We
experiment with four initial learning rates: 1×10−5, 1×10−4,
1× 10−3, and 1× 10−2. The denoising performance in Fig.
5 shows that the highest SDR and STOI are achieved with
the initial learning rate of 1 × 10−3, albeit with a slightly
lower PESQ than with 1×10−4 and 1×10−2. We now fix the
initial learning rate to 1×10−3 and experiment with different
network topologies. We experiment with one and two fully
connected layers in the network, with 512 and 1024 neurons
in each layer. As shown in Fig. 6, the best overall denoising
performance is achieved with two fully connected layers,
each having 1024 neurons. The SDR and STOI values at
this network configuration are the highest, while the PESQ
value is only slightly lower than when the number of neurons
in each of the two layers is 512.

In Fig. 7(a), we provide an illustration of a clean cough
recording and, in Fig. 7(b), a noisy version of this recording
with babble noise at 0 dB SNR. The denoised cough record-
ing using the FNN algorithm, with window length of 256,
window overlap of 75%, initial learning rate of 1 × 10−3,
and 1024 neurons in each of the two layers, is illustrated in



Fig. 7. Waveform of a (a) clean cough recording, (b) noisy cough recording,
and (c) denoised using FNN cough recording.

Fig. 8. Denoising performance of Wiener filter and FNN.

Fig. 7(c). Visual analysis of the denoised signal of Fig. 7(c)
shows that the denoising method is effective in removing
the background noise shown in Fig. 7(b) while preserving
the cough sound signal characteristics shown in Fig. 7(a).

Finally, in Fig. 8, we compare the performance of the
FNN-based cough sound recording denoising method used
in this work against Wiener filtering [15], a commonly used
method for audio denoising. The FNN method outperforms
the Wiener filtering denoising with respect to all three
metrics, offering a relative improvement of 42.90% in SDR,
4.76% in STOI, and 1.54% in PESQ.

IV. CONCLUSION

This paper presented a method for denoising cough sound
recordings using a fully connected FNN. Through various
experiments, we determined the most appropriate parameter-
ization of the FNN in terms of the window length, window
overlap, initial learning rate, and network configuration.
These parameter settings produced an SDR of 9.017 dB,
STOI of 0.858, and PESQ of 1.448, outperforming the
conventional Wiener filtering denoising method.

Earlier works on objective cough sound analysis exclude
noisy cough recordings [4]. However, everyday environ-
ments, such as homes and hospitals, where an objective
cough sound assessment technology would be used carry
background noises. Cough sound denoising, such as the one
employed in this work, can make objective cough sound
assessment possible in such noise-prone environments.

Our work, however, has limitations. The dataset is lim-
ited to 300 cough recordings. A larger dataset of cough
recordings could provide a stronger generalizability of the
network. In addition, in this work we have studied only
one type of noise, babble noise, and only at one SNR, 0
dB. However, other noise types and levels can be present
in real-life. In the future, we plan to extend our study
to overcome these limitations and also explore other deep
learning based denoising methods and network architectures.
Although our experiments are not exhaustive, they shed
light on the application of neural networks for cough sound
denoising purposes and, therefore, demonstrate their poten-
tial in improving objective cough sound evaluation in the
presence of background noises.
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