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A B S T R A C T   

Background: Acute respiratory diseases are a leading cause of morbidity and mortality in children. Cough is a 
common symptom of acute respiratory diseases and the sound of cough can be indicative of the respiratory 
disease. However, cough sound assessment in routine clinical practice is limited to human perception and the 
skills of the clinician. Objective cough sound evaluation has the potential to aid clinicians in acute respiratory 
disease diagnosis. In this systematic review, we assess and summarize the predictive ability of machine learning 
algorithms in analyzing cough sounds of acute respiratory diseases in the pediatric population. 
Method: Our systematic search of the Scopus, Medline, and Embase databases on 25 January 2023 identified six 
articles meeting the inclusion criteria. Quality assessment of the included studies was performed using the 
checklist for the assessment of medical artificial intelligence. 
Results: Our analysis shows variability in the input to the machine learning algorithms, such as the use of various 
cough sound features and combining cough sound features with clinical features. The use of the machine learning 
algorithms also varies from conventional algorithms, such as logistic regression and support vector machine, to 
deep learning techniques, such as convolutional neural networks. The classification accuracy for the detection of 
bronchiolitis, croup, pertussis, and pneumonia across five articles is in the range of 82–96%. However, a sig-
nificant drop is observed in the detection accuracy for bronchiolitis and pneumonia in the remaining article. 
Conclusion: The number of articles is limited but, in general, the predictive ability of cough sound classification 
algorithms in childhood acute respiratory diseases shows promise.   

1. Introduction 

Acute respiratory diseases are one of the leading causes of morbidity 
and mortality in children worldwide [1]. Acute respiratory diseases 
include both upper and lower respiratory diseases, such as croup, 
bronchiolitis, pertussis, and pneumonia [2]. Cough is a common 
symptom of acute respiratory diseases and one of the most common 
presenting conditions in primary care globally [3]. The respiratory in-
fections causing the acute respiratory disease can affect the airways 
differently, thereby producing variation in cough type, such as the 
distinctive barking cough of croup [4] and paroxysmal coughing ending 
in the characteristic “whoop” in pertussis [5]. Cough sound assessment 
is, therefore, useful in assessing the condition of the respiratory system. 
However, assessing cough sounds in clinical practice can be subjective, 
dependent on the training and skills of the clinician [6]. In addition, 
diagnostic errors are common in acute pediatric respiratory diseases, 
such as in emergency departments [7]. Objective artificial intelligence 

(AI) driven cough sound evaluation has the potential to aid clinicians in 
respiratory disease diagnosis. Despite the potential significance of 
objective cough sound evaluation in clinical decision making of acute 
respiratory diseases, no evidence syntheses have been completed on this 
topic. Therefore, we conducted a systematic review to determine the 
ability of machine learning methods to predict acute respiratory diseases 
in the pediatric population using cough sound. 

2. Methods 

The review was completed in accordance with the preferred 
reporting items for systematic reviews and meta-analysis (PRISMA) 
guidelines [8]. 

2.1. Search strategy 

We performed a systematic literature search in Scopus, Medline 
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(Ovid), and Embase (Ovid) databases. The search was performed on 25 
January 2023. The following search terms were used in all three data-
bases: (“pediatric” OR “paediatric” OR “child” OR “children” OR 
“childhood”) AND (“cough”) AND (“machine learning” OR “deep 
learning” OR “artificial intelligence” OR “feature extraction” OR “ac-
curacy”). Title, abstract, and keyword search was performed in all three 
databases in English language. The search terms were kept broad and no 
restriction was placed on the publication date and study location to 
maximize the search results. We did not search for any specific acute 
respiratory disease or include the term “acute respiratory disease” in our 
search terms. This ensured we were not restricting our search to a group 
of respiratory diseases or missing out on relevant articles that did not 
include “acute respiratory disease” in their title, abstract, or keyword, 
maximizing our search results. Using this approach allowed us to cap-
ture a broad range of articles to be screened manually for their rele-
vancy. Gray literature was not considered in this systematic review. 

2.2. Inclusion and exclusion criteria 

This systematic review included articles that used cough sound fea-
tures and AI algorithms to assess the diagnosis of acute respiratory 
diseases in the pediatric population. As a minimum criterion, cross- 
validation or training and testing or testing sets were required for a 
study to be included in this systematic review. This is because models 
lacking resampling procedures are less likely to appropriately generalize 
on independent datasets. In addition, studies with small sample sizes 
(≤30) were excluded since cross-validation with small sample sizes, 
without training and testing sets, can cause model overfitting and lead to 
inflated and highly variable predictive results [9]. 

The study of respiratory diseases differs by the age of the participants 
with children more susceptible to certain respiratory diseases. Pediatric 
respiratory studies often focus on issues related to the development and 
growth of the respiratory system, as well as the diagnosis and manage-
ment of respiratory conditions that are unique to children. Since this 
systematic review focuses on the pediatric population, only studies that 
included children with ages ≤ 18 years (216 months) were included. 

Acute respiratory diseases are the leading cause of childhood illness 
and death and form the subject of this systematic review. As such, 
studies on chronic respiratory diseases, such as chronic asthma, were 
excluded. This systematic review focuses on detecting specific acute 
respiratory diseases against other respiratory diseases in children, 
therefore, studies on detecting groups of respiratory diseases, such as 
upper and lower respiratory diseases, were excluded. Similarly, studies 
that focused on the type of cough, such as productive (wet) and non- 
productive (dry) cough, were excluded. In addition, if the negative or 
non-disease class had only healthy subjects or subjects from only one 
non-target disease group then they were excluded as these can be 
considered relatively easier problems and of relatively less clinical 
value. 

Studies that relied on non-cough sound features, such as de-
mographic and clinical data, in addition to cough sound features were 
included. Abstracts and conference proceedings were included if suffi-
cient data could be extracted from these publications or related publi-
cations. Some studies present their initial findings as a short paper, such 
as a conference abstract or paper, but followed by an extended publi-
cation. As such, where a preliminary study was followed by a more 
comprehensive study, only the latter was included. 

2.3. Article selection 

Search results were downloaded from the databases into EndNote 
X9. Duplicates were removed in EndNote and the remaining results were 
exported to Microsoft Excel. R.V.S. and H.R.A. independently screened 
the titles and abstracts of these articles for eligibility. Articles that were 
considered eligible for inclusion by either reviewer were reviewed for 
full-text screening and assessed for inclusion. Reasons for exclusion after 

full-text screening were entered in Excel and any disagreements were 
resolved by discussion, with a consensus reached for each study. 

2.4. Data extraction and analysis 

The methodological, demographic, and outcome data were extracted 
from the included articles by R.V.S. These were reviewed by H.R.A. and 
any disagreements were resolved through discussion. The extracted data 
included study characteristics (first author, year of publication, country 
where study was conducted, study design, sample size, feature extrac-
tion, feature selection, machine learning classifier, cough segmentation 
method); population characteristics (age, gender); and performance 
metrics (sensitivity, specificity, accuracy, and the 95% confidence in-
terval for these metrics). If a study used multiple feature extraction, 
feature selection, and machine learning classifiers then all these data 
were extracted. In studies which did not report the accuracy and 95% 
confidence interval metrics, these were calculated using the relevant 
data available in these studies. The accuracy value was calculated as the 
total number of correct classifications divided by the overall sample size, 
where the number of correct classifications was calculated from the 
sensitivity and specificity values and the class sample size, and the 95% 
confidence interval was calculated using the method described by 
Newcombe [10]. To be consistent, the performance metrics are rounded 
to the nearest whole number in percentage for all the studies. Meta- 
analysis was not performed due to the small number of studies in each 
disease group and because of the overlap between the studies, which 
cannot be easily accounted for in meta-analysis [11]. 

2.5. Quality assessment 

Quality assessment was performed by R.V.S using the checklist for 
the assessment of medical AI (ChAMAI) [12]. It was reviewed by H.R.A 
and any disagreements were resolved through discussion. The ChAMAI 
checklist is a tool proposed by the IJMEDI for assessing the quality of 
medical artificial intelligence studies. Its aim is to differentiate high- 
quality machine learning studies from basic medical data-mining 
studies. After literature selection, researchers can use this checklist to 
evaluate the quality of included articles based on the study purposes, 
inclusion criteria, and professional knowledge. The checklist comprises 
six dimensions: problem understanding, data understanding, data 
preparation, modeling, validation, and deployment, consisting of a total 
of 30 questions. Each question can be rated as OK (adequately 
addressed), mR (sufficient but improvable, minor revision needed), and 
MR (inadequately addressed, major revision needed). Based on [13], we 
linked scores to the responses for each item. Of the 30 questions in the 
ChAMAI checklist [12], 20 have been categorized as high-priority and 
10 as low-priority. In high-priority items, scores of 2, 1, and 0 were 
assigned to OK, mR, and MR, respectively, while scores for low-priority 
items were halved. The maximum possible score is 50 points, and the 
study quality was classified as low (0–19.5), medium (20–34.5), or high 
(35–50) [13]. All eligible articles were included for analysis regardless 
of their quality assessment outcome. 

3. Results 

3.1. Search results 

The process for identifying eligible articles is illustrated in the 
PRISMA flow diagram of Fig. 1. Search in Scopus, Medline (Ovid) and 
Embase (Ovid) produced 464, 164 and 509 results, respectively, for a 
total of 1,137 articles. Removing 504 duplicate articles left 633 articles 
for the title and abstract screening. After title and abstract screening, 
622 articles were excluded leaving 11 articles for full-text screening. 
Finally, 5 articles were excluded after the full-text screening with the 
remaining 6 articles meeting the inclusion criteria. These 6 articles were 
included for quality assessment. All 6 articles were included for 
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qualitative synthesis and quantitative analysis. 

3.2. Study characteristics 

A list of the included articles [14–19] and their relevant character-
istics are given in Table 1. One article [16] focused on detecting croup 
from other respiratory diseases, one article [19] focused on detecting 
pertussis from other respiratory diseases, two articles [14,15] focused on 
detecting pneumonia from other respiratory diseases, and the remaining 

two articles [17,18] focused on detecting multiple acute respiratory 
diseases, such as bronchiolitis, croup, and pneumonia, from other res-
piratory diseases. The studies in two articles [16,17] were conducted in 
Australia, the studies reported in articles [14,15] use the same data 
which was collected in Indonesia, and the studies reported in article [18] 
was conducted in the United States. The data for the study in the 
remaining article [19] was collated from YouTube video postings, 
therefore, likely coming from many different countries. The age range of 
the subjects was 0–7 years in the study reported in article [19], 0–12 

Fig. 1. PRISMA flow diagram of included articles which use cough sound features and machine learning to detect acute respiratory diseases in the pediat-
ric population. 

Table 1 
Overview of the studies included in the systematic review.  

Study 
Reference 

Study Disease 
(s) 

Study Design Country Sample Age 
Range 
(months) 

Method Cough 
Segmentation 

Abeyratne et al.  
[14] 

Pneumonia Prospective Indonesia 91 1–180 Cough features: BS, NGS, FF, LogE, ZCR, Kurt, MFCC 
Feature selection: p-value 
Classifier: LR 

Manual 

Kosasih et al.  
[15] 

Pneumonia Prospective Indonesia 91 1–180 Cough features: BS, NGS, FF, LogE, ZCR, Kurt, MFCC, WF 
Feature selection: p-value 
Classifier: LR 

Manual 

Sharan et al.  
[16] 

Croup Prospective Australia 479 0–192 Cough features: MFCC, CIF 
Feature selection: p-value, SFS 
Classifier: LR, SVM (RBF) 

Automatic 

Porter et al. [17] Bronchiolitis 
Croup 
Pneumonia 

Prospective Australia 585 1–144 Cough features: BS, NGS, FF, LogE, ZCR, Kurt, MFCC, WF 
Clinical features: fever, rhinorrhea, wheeze, hoarse 
voice, maximum days of symptoms 
Feature selection: p-value 
Classifier: LR 

Automatic 

Moschovis et al.  
[18] 

Bronchiolitis 
Pneumonia 

Prospective United 
States 

1251 1–144 Cough features: BS, NGS, FF, LogE, ZCR, Kurt, MFCC, WF 
Clinical features: fever, rhinorrhea, wheeze, age, 
duration of symptoms 
Feature selection: p-value 
Classifier: LR 

Automatic 

Sharan et al.  
[19] 

Pertussis Retrospective Worldwide 42 1–84 Cough features: MFCC, WF, CIF, mel-spectrogram, 
wavelet scalogram, cochleagram 
Feature selection: ANOVA, t-test 
Classifier: LR, NB, SVM (RBF), CNN 

Manual 

BS – bispectrum score, CIF – cochleagram image feature, CNN – convolutional neural network, FF – formant frequencies, Kurt – kurtosis, LogE – log energy, LR – logistic 
regression, MFCC – mel-frequency cepstral coefficients, NB – Naïve Bayes, NGS – non-Gaussianity score, RBF – radial basis function, SFS – sequential feature selection, 
SVM – support vector machine, WF – wavelet features, ZCR – zero-crossing rate. 
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years in studies reported in articles [17,18], 0–15 years in studies re-
ported in articles [14,15], and 0–16 years in the study reported in the 
remaining article [16]. The number of subjects in the studies in three 
articles [14,15,19] was less than 100. The studies in the remaining three 
articles had more than 100 subjects, but the studies in two articles 
[17,18] had a different number of subjects for different disease studies. 
The number of subjects for the target acute respiratory disease and the 
study design were not reported in article [18] but they were obtained 
from other articles [20,21] reporting the same studies. The diagnosis of 
the subjects in all cases was done by clinicians, except one study [19] 
where the diagnosis was attributed by the information provided in the 
title and/or description of the online videos and later checked by a 
clinician to assess its plausibility. One study [19] was retrospective 
while the remaining studies [14–18] report results on prospective 
datasets. 

3.3. Data recording 

In the included articles, cough sound data was recorded using a 
smartphone [16–18] or using bedside microphones (Rode NT3) [14,15]. 
For the remaining article [19], the recordings were likely made using 
different devices but most, if not all, were believed to be made using 
smartphones. The recordings in all cases were made in a hospital envi-
ronment, except for one article [19]. 

3.4. Cough data 

The cough segmentation in studies reported in three articles 
[14,15,19] was performed manually, while the studies reported in the 
remaining three articles [16–18] used automatic cough segmentation. 
The auto segmentation algorithm in these articles [16–18] used various 
handcrafted features and time delay neural network. It is described in a 
separate study [16] and is built on an earlier work [22]. 

All studies used multiple coughs from each subject. In one article 
[16], the maximum number of coughs per subject is restricted to 10 with 
an average of 8.96 coughs per subject on the training dataset and 9.50 
coughs per subjects on the test dataset. The maximum number of coughs 
was restricted to 20 in the study reported in one article [19], for a total 
of 542 coughs from the 42 subjects. In two articles [14,15], the training 
dataset had 2–15 coughs per subject for a total of 440 coughs from the 66 
subjects and the test dataset had 15 coughs per subject for a total of 375 
coughs from the 25 subjects. In the studies in the remaining two articles 
[17,18], the first 5 coughs were used from all the subjects. The coughing 
was spontaneous or voluntary in the studies reported in articles [16–18]. 
Spontaneous coughs were particularly needed when subjects, such as 
infants and young children, could not cooperate in providing voluntary 
coughs. Based on the description of the remaining three articles [17–19], 
we believe they mostly used spontaneous coughing. 

3.5. Cough and clinical features 

The studies reported in three articles [15,16,19] used only cough 
sound features in their classification models, studies in two articles 
[17,18] combined cough sound features and clinical features, and the 
study reported in one article [14] experimented with both, cough sound 
features only and combined cough sound and clinical features. Various 
cough features and clinical features were experimented with across the 
included studies. Mel-frequency cepstral coefficients (MFCCs) were the 
most widely used features, experimented with in all the studies. Three 
articles [15,17,18] used a similar feature set which includes MFCCs, 
bispectrum score (BS), non-Gaussianity score (NGS), formant fre-
quencies (FF), log energy (LogE), zero-crossing rate (ZCR), kurtosis 
(Kurt), and wavelet features (WF). A similar feature set was also used in 
another article [14], but without WF. MFCCs were used together with 
cochleagram image features (CIF) in article [16], where cochleagram is 
a type of time–frequency representation utilizing gammatone filters. 

MFCCs, CIF, and WF were experimented with in study [19] together 
with three time–frequency representations: mel-spectrogram, wavelet 
scalogram, and cochleagram. 

Different articles used slightly different clinical features. Breathing 
index (derived as the breathing rate for different age groups), cough, 
fever, and age were used in the study in article [23]; fever, rhinorrhea, 
wheeze, hoarse voice, and maximum days of symptoms were used in the 
studies in article [17]; and fever, rhinorrhea, wheeze, age, and duration 
of symptoms were used in the studies in article [18]. 

3.6. Classifiers 

Classification using logistic regression (LR) was experimented with 
in all the studies. In the studies reported in articles [17,18], the output of 
multiple binary classification disease models built using LR were input 
to a softmax classifier for final prediction. In addition to the LR classifier, 
the study reported in article [16] utilized the support vector machine 
(SVM) classifier with a radial basis function (RBF) kernel. SVM with RBF 
kernel was also used in the study reported in article [19], in addition to 
the Naïve Bayes (NB) classifier, and convolutional neural network 
(CNN). As such, study [19] was the only study that made use of a deep 
learning classification technique. Due to their relatively small dataset, 
they used a relatively shallow CNN with data augmentation using mixup 
[24] during training to prevent model overfitting. Two-dimensional 
CNN was used and the inputs to the CNN were the three time-
–frequency image-like representations. One CNN was trained on each 
time–frequency image and the outputs of the CNNs were pooled together 
for classification using SVM. 

3.7. Feature selection 

In the studies reported in articles [14–18], feature selection for the 
LR classifier was performed using the p-value of the coefficient estimates 
of the LR. In addition, sequential feature selection (SFS) was experi-
mented with in the study in article [16] while one-way analysis of 
variance and t-test methods were used for feature selection in the study 
in article [19]. 

3.8. Cough and subject classification 

All the included studies used binary classification and the first stage 
of classification was cough classification, where the coughs in each 
recording were assigned the same disease label as the subject. In the 
study in article [16], the subject was determined to have the target 
disease if at least one cough was classified positive for the target disease. 
In the studies reported in the other five articles [14,15,17–19], cough 
index was used in determining whether or not a subject had the target 
disease, where cough index is the number of coughs classified as the 
target disease divided by the number of coughs from the subject. A 
cough index threshold was then computed to classify a subject into two 
classes, positive (disease) and negative (non-disease), where the non- 
disease class was comprised of all non-target respiratory diseases. 

3.9. Diagnostic performance 

In this systematic review, we focus on the accuracy metric to analyze 
the classification performance. However, some studies had highly 
imbalanced class distributions because of which we also report the 
sensitivity and the specificity metrics. We also include the 95% confi-
dence interval for these metrics. The evaluation results are summarized 
in Table 2. 

The accuracy in detecting croup from other respiratory diseases was 
82% or more using cough sound features alone and when combining 
cough and clinical features. Our search found only one study [19] on 
detecting pertussis using cough sound which achieved an accuracy of 
90%. The two studies [17,18] on bronchiolitis used a combination of 
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cough and clinical features. While one study [17] achieved an accuracy 
of 83%, the accuracy dropped to 65% in the second study [18]. Two 
studies [14,15] on pneumonia reported results using cough sound fea-
tures only and three studies [14,17,18] reported results using cough and 
clinical features. The accuracy in detecting pneumonia using cough 
sound features only was 88% or higher and, in one study [14], the ac-
curacy improved from 88% to 96% when cough features were combined 
with clinical features. However, the accuracy dropped to 85% [17] and 
62% [18] in two studies using a similar approach. 

3.10. Study quality 

Details of the results of the quality assessment are provided in the 
Supplementary File. The scores of each requirement and the total score 
in each study are summarized in Table 3. The average score of the 
included studies was 31.2 with one study [19] having a score of 24 and 
the remaining five studies [14–18] having a score in the range 32–33. As 
such, all the articles were of a medium quality. Fig. 2 shows the pro-
portion of the different answers in the high- and low-priority items. 

4. Discussion 

In this paper, we describe the methodology in our systematic review 
of studies focused on detecting acute respiratory diseases using cough 
sound characteristics and machine learning. We also summarize key 
trends that emerged when analyzing the included studies. Earlier studies 
used a conventional sound recording setup while more recent studies 
used smartphones and all studies analyzed multiple cough sounds from 
each subject in predicting the respiratory disease of the subject. We 
noted that earlier works relied on conventional feature engineering and 
machine learning methods but a more recent study based on deep 
learning techniques outperformed such conventional methods, even on 
a relatively small dataset. Respiratory infections that are well-known to 
cause a distinctive cough sound, such as the infection of croup and 
pertussis (whooping cough), are seen to give high accuracy using cough 
sound features on its own or when combined with clinical features. 

However, we observed a significant drop in classification accuracy 
for bronchiolitis and pneumonia from one prospective study to another, 
even though both studies used similar case definitions and data acqui-
sition setup. This highlights the subjectiveness in clinical decision- 
making of respiratory diseases, especially for bronchiolitis and pneu-
monia [7], and the need for objective respiratory disease evaluation 

Table 2 
Summary of the results for the included studies.  

Study Disease Study Reference Sample (Training/ 
Validation) 

Sample (Test) Input to ML classifier Performance [95% CI] (%) 

Bronchiolitis Porter et al. [17] – 157 Cough + clinical features Sensitivity = 84 [77–90] 
Specificity = 81 [61–93] 
Accuracy = 83 [77–89] 

Moschovis et al. [18] – 131 Cough + clinical features Sensitivity = 76 [61–88] 
Specificity = 60 [49–70] 
Accuracy = 65 [56–73] 

Croup Sharan et al. [16] 364 115 Cough features only Sensitivity = 92 [78–100] 
Specificity = 85 [78–92] 
Accuracy = 86 [80–92] 

Porter et al. [17] – 568 Cough + clinical features Sensitivity = 85 [75–93] 
Specificity = 82 [78–85] 
Accuracy = 82 [79–85] 

Pertussis Sharan et al. [19] 42 – Cough features only Sensitivity = 95 [77–99] 
Specificity = 86 [65–95] 
Accuracy = 90 [78–96] 

Pneumonia Abeyratne et al. [14] 66 25 Cough features only Sensitivity = 94 [73–99] 
Specificity = 75 [41–93] 
Accuracy = 88 [70–96] 

Cough + clinical features Sensitivity = 94 [73–99] 
Specificity = 100 [68–100] 
Accuracy = 96 [80–99] 

Kosasih et al. [15] 66 25 Cough features only Sensitivity = 94 [73–99] 
Specificity = 88 [53–98] 
Accuracy = 92 [75–98] 

Porter et al. [17] – 569 Cough + clinical features Sensitivity = 87 [75–94] 
Specificity = 85 [82–88] 
Accuracy = 85 [82–88] 

Moschovis et al. [18] – 1250 Cough + clinical features Sensitivity = 63 [53–72] 
Specificity = 62 [59–65] 
Accuracy = 62 [59–65]  

Table 3 
Quality assessment scores of the six included studies according to the ChAMAI checklist.  

Study Reference Problem Understanding 
(10) 

Data Understanding 
(6) 

Data Preparation 
(8) 

Modeling 
(6) 

Validation 
(12) 

Deployment 
(8) 

Total 
(50) 

Abeyratne et al.  
[14] 

10 3 3 6 8.5 2 32.5 

Kosasih et al. [15] 10 3 3 6 8.5 1.5 32 
Sharan et al. [16] 10 4 3 6 8 2 33 
Porter et al. [17] 10 4 3 6 8.5 1.5 33 
Moschovis et al.  

[18] 
10 4 3 6 8 1.5 32.5 

Sharan et al. [19] 4 1 4 6 7.5 1.5 24  

R.V. Sharan and H. Rahimi-Ardabili                                                                                                                                                                                                       



International Journal of Medical Informatics 176 (2023) 105093

6

tools. We also note that in detecting croup, cough sound features [16] 
yielded higher classification accuracy than the combined cough and 
clinical features [17]. This could be because subjects with croup have a 
distinctive barking cough making the cough sound features very infor-
mative. The inclusion of clinical features may not add value to the cough 
sound features in the croup classification model. However, the two 
studies [16,17] employed different sample size, cough sound features, 
feature selection method, and machine learning classifier which could 
also be the reason for this difference in performance. The contribution of 
cough features and clinical features to the pneumonia classification 
model were easy to determine in one article [14] as performance metrics 
using cough features and a combination of cough and clinical features 
are reported. However, articles [17,18] reported performance metrics 
using only the combined cough and clinical features which makes it 
difficult to gauge the contribution of each feature type to their disease 
classification models. 

The number of articles included in this systematic review is small 
which makes it difficult to see long-term overall trends in quality 
assessment. However, the overall score of studies in articles [14–18] 
were close to the upper limit of medium quality while the study reported 
in one article [19] was close to the lower limit. This was due to several 
reasons, such as the reference diagnosis in this study [19] did not follow 
standard clinical guidelines and the index test results were reported in 
cross-validation only, without an separate test set. Articles [14–18] 
adequately addressed (OK) more than 50% of the high-priority re-
quirements but this dropped to 30% or less for low-priority re-
quirements, and 40–60% of the low-priority requirements require major 
revision (MR). In addition, all the articles performed poorly in deploy-
ment, with a total score of 25% or less from the maximum possible score 
of 8, and none of the studies had been externally validated on data from 
a different healthcare setting. 

Furthermore, only one study [19] used deep learning classification, 
even though it had the smallest number of subjects of all the studies 
included in this work. Due to the relatively small dataset, their method 
relied on data augmentation and used a relatively shallow CNN to pre-
vent overfitting. However, more sophisticated pretrained CNN archi-
tectures, such as AlexNet [25] and GoogleNet [26], and variations of 
CNN, such as with residual connections, ResNet [27], have the potential 
to perform better if presented with enough training data and finding an 
effective image-like representation of the one-dimensional cough sound 
signals. While AlexNet, GoogleNet, and ResNet have been pretrained on 
images, pretrained CNNs for audio classification [28] are also available 
which take in two-dimensional mel-spectrogram representation of 
cough sounds as input. More recently, learning directly from one- 
dimensional raw audio signals is also possible, such as with SincNet 
[29,30]. While neural networks can be complex, it has the potential to 
perform effective feature engineering and learning without significant 
signal transformation and learn non-linear characteristics. Neural net-
works have been widely explored in medical imaging but their potential 
is yet to be realized in detecting childhood acute respiratory diseases 
using cough sounds. 

This systematic review has limitations. We found only six articles in 
the literature that met our inclusion criteria. In addition, only one or two 
studies were available for each acute respiratory disease, except pneu-
monia, and there was overlap between some of these studies because of 
which meta-analysis was not performed. The study reported in article 
[19] had a relatively poor quality assessment as the reference diagnosis 
did not follow clinical guidelines and the index test was not evaluated on 
an independent test dataset. Our systematic review yielded studies on 
only four acute respiratory diseases but children are affected by several 
other types of acute respiratory diseases. The lack of studies shows the 
infancy of research in detecting acute respiratory diseases using cough 
sounds and the recent pandemic shows the need for more research in 
objective cough sound evaluation. 

The findings from this systematic review, such as data acquisition, 
cough sound and clinical features, and machine learning techniques, 
would provide a useful starting point in the design of similar studies in 
the future. Due to the relatively small number of included studies in this 
systematic review, learnings from similar studies in the adult popula-
tion, such as pneumonia [31], would also be useful. One shortcoming of 
the studies included in this systematic review is the lack of external 
validation. In detecting COVID-19 using cough sounds in adult subjects, 
a recent study [32] reported promising results but the predictive per-
formance of the algorithm declined when evaluated on an independent 
dataset [33]. In the included studies, a similar drop in algorithmic 
performance is observed when the algorithms developed in one setting 
[17] are adopted and evaluated in another setting [18]. Similar prob-
lems have been reported in some other AI in healthcare applications as 
well, such as in sepsis risk prediction in adults using electronic health 
record data [34]. Such studies highlight the challenges of using AI in 
healthcare applications, especially in different settings, but they also 
offer valuable insights and lessons that can be used in future study de-
signs, such as the need for data standardization at the initial develop-
ment stage to minimize heterogeneity in health data [35] and the need 
to reduce subjectiveness in ground truthing [36]. 

In conclusion, the limited number of included studies shows the in-
fancy of work in analyzing cough sounds using signal processing and 
machine learning techniques for detecting acute respiratory diseases in 
children. However, the promising diagnostic accuracy in most of the 
reviewed studies shows its potential as a respiratory disease assessment 
tool. Knowledge gained from this systematic review can be used in 
future study designs and also be useful to regulatory bodies, technology 
manufacturers, engineers and data scientists, and clinicians. Millions of 
children are affected by respiratory infections every year where cough is 
one of the common symptoms. Visiting a clinician with an infective 
respiratory disease can lead to other people getting infected. Virtual 
healthcare has seen an increased uptake during COVID-19 and this is 
expected to continue [37]. There is a potential for such objective cough 
sound assessment technology to be integrated into existing virtual 
healthcare systems to aid clinical diagnosis. 

Ethics approval and consent to participate: 
Not applicable. 

Fig. 2. Proportion of OK (adequately addressed), mR (sufficient but improvable, minor revision needed), and MR (inadequately addressed, major revision needed) in 
the high- and low-priority requirements. 
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