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Abstract— Pneumonia is one of the leading causes of
death in children. Prompt diagnosis and treatment can
help prevent these deaths, particularly in resource poor
regions where deaths due to pneumonia are highest. Clin-
ical symptom-based screening of childhood pneumonia
yields excessive false positives, highlighting the necessity
for additional rapid diagnostic tests. Cough is a prevalent
symptom of acute respiratory illnesses and the sound of
a cough can indicate the underlying pathological changes
resulting from respiratory infections. In this study, we
propose a fully automated approach to evaluate cough
sounds to distinguish pneumonia from other acute respi-
ratory diseases in children. The proposed method involves
cough sound denoising, cough sound segmentation, and
cough sound classification. The denoising algorithm uti-
lizes multi-conditional spectral mapping with a multilayer
perceptron network while the segmentation algorithm de-
tects cough sounds directly from the denoised audio wave-
form. From the segmented cough signal, we extract var-
ious handcrafted features and feature embeddings from
a pretrained deep learning network. A multilayer percep-
tron is trained on the combined feature set for detecting
pneumonia. The method we propose is evaluated using a
dataset comprising cough sounds from 173 children di-
agnosed with either pneumonia or other acute respiratory
diseases. On average, the denoising algorithm improved
the signal-to-noise ratio by 44%. Furthermore, a sensitivity
and specificity of 91% and 86%, respectively, is achieved
in cough segmentation and 82% and 71%, respectively, in
detecting childhood pneumonia using cough sounds alone.
This demonstrates its potential as a rapid diagnostic tool,
such as using smartphone technology.

Index Terms— Cough sound, deep learning features, de-
noising, pneumonia, segmentation.
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NEUMONIA accounted for 740,180 (14%) of all deaths
in children under 5 years old in 2019, making it the
leading infectious cause of death among children globally
[1]. Pneumonia poses a significant health threat to children
globally, with a disproportionate burden of morbidity and
mortality observed in resource-deprived regions, particularly in
southern Asia and sub-Saharan Africa [1]. Notably, indigenous
children in developed nations like Australia and Canada also
experience a disproportionate impact from pneumonia [2], [3].
Early detection and prompt treatment of pneumonia is
essential in reducing childhood deaths [4]. The clinical al-
gorithm developed by the World Health Organization em-
ploys symptoms like cough, breathing difficulty, fever, and
chest pain to categorize pneumonia in regions with limited
resources [5]. However, the algorithm has poor specificity [6],
[7] because other acute respiratory diseases can also have
similar symptoms. Inaccurate diagnosis of pneumonia can
result in delayed or inappropriate treatment, contributing to the
misuse of antibiotics and driving antibiotics resistance [8], [9].
Chest radiography can be used for differential diagnosis [10],
[11] but it is not readily available in resource poor regions.
The aforementioned situation underscores the necessity for
the development of new rapid diagnostic tests specifically
designed for pneumonia.
Cough is a common symptom of acute respiratory illnesses.
It involves three distinct phases, inspiratory, compressive,
and expiratory, and is an important defensive mechanism for
maintaining lung health [12]. The sound produced during a
cough is closely linked to its physiological process. Different
respiratory conditions can impact different regions of the
respiratory system. Consequently, these pathological changes
can manifest in the sound of a cough [13], providing valuable
clues about the underlying respiratory disease [14], [15], [16].
We posit that cough sound analysis can serve as a valu-
able screening method for childhood pneumonia. However,
differentiating cough sounds by parents or caregivers may be
impractical, while clinical assessment relies on the expertise
and training of clinicians [17]. To address these limitations,
our objective in this study is to develop a computational
method for detecting childhood pneumonia through cough
sound analysis. Subject to further external validation and
clinical evaluation and, if widely distributed, such as through
a smartphone application, such an objective assessment tool
could serve as a valuable screening tool for parents and
caregivers. Additionally, it has the potential to be particularly
useful in developing countries and remote communities where
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access to healthcare facilities and clinicians is challenging.

A. Related Works

Despite the plausibility of detecting childhood pneumonia
using the sound of cough, our literature search found a limited
number of previous studies [6], [18], [19], [20], [21], [22]. Two
studies [6], [18] on detecting childhood pneumonia through
cough sound analysis employ conventional feature extraction,
including the utilization of manually crafted features, and clas-
sification techniques. Such conventional classification methods
have been superseded by neural network-based classification
methods, including deep learning techniques. This is true
even on small datasets using techniques such as transfer
learning [22] and shallow networks [23]. In addition, their test
results are reported on only 25 pneumonia and non-pneumonia
subjects, which makes it difficult to see the generalizability of
their method, and the cough sounds are manually segmented,
which prevents deployment of their method as a fully auto-
mated diagnostic aid.

Two studies [19], [20] report their results on much larger
datasets with automatically segmented cough sounds. How-
ever, similar to the previous two studies [6], [18], their method
employs conventional feature engineering and classification
methods. Also, the cough sound features are augmented with
clinical symptoms which makes it difficult to determine the
contribution of the cough features to their classification algo-
rithm.

The remaining two studies [21], [22] employ neural
network-based techniques. However, in one study [21], the
automatic cough segmentation algorithm is based on a simple
energy threshold method, which may not work well in the
presence of background noise and non-cough sounds, as
present in their recordings. In addition, they did not report
the performance of their cough segmentation algorithm and
the pneumonia vs non-pneumonia cough classification results
are reported on a small subset of their overall dataset, without
a clear explanation on the method followed in the selection of
this subset. In the remaining study [22], the cough sounds are
manually segmented which once again prevents deployment
of their method. Both the studies [21], [22] utilize the same
dataset which contains background noise. These can degrade
the quality of the cough sounds but neither of these studies
perform noise filtering or report the performance of their
denoising method.

B. Automated Cough Sound Analysis

In this work, we propose a fully automated method to detect
childhood pneumonia that utilizes only cough sound charac-
teristics. In particular, our method employs different neural
network methods for denoising cough sounds, cough sound
segmentation, and cough sound classification. In denoising
cough sounds, compared to an earlier study [24], our work
proposes multi-conditional training of a multilayer perceptron
(MLP) model to emulate the different noise levels that can
be present in any given environment and we evaluate the
performance of our denoising algorithm on noisy cough sound
recordings collected in a real-life environment.

Our cough segmentation algorithm learns directly from
the denoised cough waveforms, without the need for manual
feature engineering as seen in earlier works [19], [20], [21].
This is achieved using a convolutional neural network, with a
customized first layer, that learns the spectral characteristics
in small time windows and a recurrent neural network that
learns the temporal dependencies between the windows. In
distinguishing between pneumonia and non-pneumonia cough
sounds, when compared to previous studies [6], [18], [19],
[20], we incorporate a set of deep learning features extracted
from a pretrained audio classification network to leverage the
power of learned representations in analyzing cough sounds.
In addition, we employ a MLP that is trained on a combined
handcrafted and deep learning features to grasp intricate
relationships between input features and amalgamate them
into higher-level representations. We validate our method on a
clinically annotated dataset that encompasses nearly twice the
number of subjects compared to two previous studies [6], [18].
To our knowledge, this is the first comprehensive work that
utilizes only cough sounds for detecting childhood pneumonia
where the cough sound analysis is fully automated.

Il. MATERIALS AND METHODS

An overview of the proposed approach is shown in Fig. 1
which comprises three main components: cough sound denois-
ing, cough sound segmentation, and cough sound classification
(pneumonia vs non-pneumonia). Background noises present in
everyday environments can degrade the quality of the cough
sounds. In this work, we draw inspiration from advancements
in speech enhancement research [25], [26], to denoise cough
sound recordings. Our approach utilizes supervised learning,
employing a MLP, to establish a mapping between the spectra
of noisy and clean cough sound signals.

The denoised recordings form input to a cough sound
segmentation network to detect the start and end point of the
cough sounds in each recording. For cough segmentation, we
propose a method inspired by SincNet [27], which operates
on the raw waveform of the denoised recordings. SincNet
is a one-dimensional convolutional neural network that uses
sinc functions in the first convolutional layer to discover more
meaningful filters. In this work, we combine the SincNet
with a bidirectional gated recurrent unit (BiGRU), a type
of recurrent neural network [28]. In the combined SincNet-
BiGRU network [29], the SincNet learns the spectral charac-
teristics within each windowed signal and BiGRU learns the
bidirectional temporal dependencies between the windows.

We extract features from the segmented cough sounds for
distinguishing between pneumonia and non-pneumonia. In
line with previous studies [6], [18], [19], [20], our work
incorporates a variety of manually crafted features that capture
different aspects of cough sounds. However, our work also
utilizes a set of deep learning features and a MLP is employed
for classification on the combined feature set. We assess
the effectiveness of our proposed approach using a clinically
verified dataset of cough sound recordings collected from
children who have been diagnosed with pneumonia or other
acute respiratory illnesses. More details on the components of
Fig. 1 are discussed in the following subsections.
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Fig. 1. An overview of the proposed method for distinguishing between pneumonia and non-pneumonia in children based on cough sound analysis.

TABLE |
OVERVIEW OF THE PNEUMONIA VS NON-PNEUMONIA DATASET USED IN
THIS WORK
Disease Group
Pneumonia Non- Overall
Pneumonia

Number of subjects 82 91 173
Total duration (s) 372.10 320.61 692.71
Number of coughs 268 223 491
Gender (male:female) | 43:39 51:40 94:79
Age range (years) 0-11

A. Dataset

In this study, we utilized an open-source dataset of cough
sound recordings obtained from West China Second University
Hospital of Sichuan University [21]. Table I provides an
overview of the dataset [22]. The dataset encompasses audio
recordings of cough sounds from 173 children diagnosed with
acute respiratory diseases, which can be classified into two
categories: pneumonia and non-pneumonia. The pneumonia
class consists of 82 subjects (43 male and 39 female), with
55 subjects diagnosed with pneumonia, 23 subjects with
bronchopneumonia, and 4 subjects with lobar pneumonia. The
non-pneumonia class comprises 91 subjects (51 male and 40
female), of which 80 subjects have acute bronchitis, 6 subjects
have acute bronchiolitis, and 5 subjects have acute asthmatic
bronchitis. The diagnosis of the diseases followed clinical
guidelines [30]. The age range of the children included in
the dataset is from O to 11 years, with the majority being one
year or younger.

The cough sound recordings in this dataset are available
in the MP3 file format, with a sampling frequency of 44.1
kHz. MP3 is a lossy conversion format where a psychoacoustic
model utilizes the critical bands of human hearing to discard
inaudible information from the audio [31]. However, the use of
human auditory filters has shown to be useful in the analysis
of cough sounds [14], [15]. For this reason, we downsampled
all the recordings to 16 kHz for further processing. The
recordings are captured within a hospital setting, incorporating
background noises such as speech and sounds produced by
medical devices. For the pneumonia class, the cumulative
duration of the recordings amounts to 372.10 seconds, while
for the non-pneumonia class, it totals 320.61 seconds. Before
proceeding with our analysis, all the recordings underwent

TABLE I
OVERVIEW OF THE TRAINING DATASET FOR THE COUGH DENOISING
ALGORITHM
Description Value
Number of recordings 300
Average duration (seconds) 9.35£1.36
Number of frames 700,594
Gender (male:female:unknown) 169:90:41
Average age (years) 39.24+14.62

manual screening to ensure their suitability for this study. As
a result, two pneumonia recordings are excluded due to the
absence of any cough sounds. Additionally, one pneumonia
recording is omitted since it was unclear whether the respira-
tory sounds are cough or non-cough. Each of the remaining
recordings contains one or more cough sounds. The pneumonia
class comprises a total of 268 cough sounds, while the non-
pneumonia class comprises 223 cough sounds. All recordings
are converted to the WAV file format for further processing.
The waveforms of pneumonia and non-pneumonia (bronchitis)
coughs are illustrated in Fig. 2(a) and (b), respectively.

The development of the deep learning-based denoising
method employed in this work requires a mapping between
a set of clean and noisy cough sound recordings. Since the
dataset of pneumonia and non-pneumonia recordings used in
this work is already noisy, we use 300 cough sound recordings,
resampled at 16 kHz, from the COUGHVID dataset [32] for
this purpose. In an earlier study [24], these 300 recordings
were manually screened to ensure minimal to no background
noise was present. A description of this dataset is provided
in Table II. The recordings have an average duration of
9.35+1.36 seconds and have a total of 700,594 frames (frame
length of 256 points with a 75% overlap between adjacent
frames).

For the deep learning based cough segmentation algorithm,
we employ a dataset for pretraining the network. The pretrain-
ing dataset has 300 cough and non-cough sound recordings
taken from the COUGHVID dataset [29]. This dataset has been
manually annotated to determine the location (start and end
points) of the cough sounds in each recording. A description
of this dataset is provided in Table III. The dataset has 150
cough and 150 non-cough recordings sampled at 16 kHz.
These recordings are divided into frames of length 64 ms with
25% overlap between frames, resulting in a total of 55,332
frames for training the cough segmentation algorithm.
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Fig. 2. The cough sound waveform for (a) pneumonia and (b) bronchitis, their mel-frequency cepstral coefficients in (c) and (d) respectively, and

their mel-spectrogram representation in (e) and (f) respectively.

TABLE Il
OVERVIEW OF THE COUGH AND NON-COUGH DATASET USED FOR
PRETRAINING THE COUGH SEGMENTATION ALGORITHM

Cough Non-Cough | All
Number of recordings 150 150 300
Average duration (s) 8.76 9.04 8.90
Number of frames 27,229 28,103 55,332
No. of coughs in recordings | 683 0 683
Average age (years) 35.57 38.00 36.09
Gender 92:40:18 22:22:106 114:62:124
(male:female:unknown)
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Fig. 3. Overview of the training procedure of the mapping-based cough
denoising method.

B. Cough Denoising

An overview of the mapping-based cough denoising method
used in this work is outlined in Fig. 3. The main background
noise type present in our evaluation dataset (Table I) is speech.
As such, to create the noisy cough recordings, speech babble
noise from the NOISEX-92 database [33] is added to the 300
clean cough recordings (Table II). These are added at a signal-
to-noise ratio (SNR) of 20 dB, 10 dB, and 0 dB for multi-
conditional training as the noise level varies in the evaluation
dataset.

The predictor input to the MLP is formed by the magnitude
spectra of the noisy cough recordings, while the target input
is formed by the magnitude spectra of the clean cough record-
ings. Conversion to frequency domain is performed using
short-time Fourier transform (STFT), applied using a window
length of 256 points, 75% overlap between adjacent frames,
and a Hamming window [24]. The resulting spectral vector is
reduced to 129 by discarding the symmetric half. The MLP
serves as a regression network, aiming to minimize the mean
square error between its output and the target input, producing
the magnitude spectrum of the denoised signal. The denoised
cough signal is obtained by converting the denoised spectra
back to the time domain using the phase of the noisy signal
and the inverse STFT [25].

The MLP is a type of fully connected feedforward artificial
neural network. The MLP architecture [24], Fig. 4, consists
of an input layer, two hidden layers, and an output layer.
The predictor input has a size of 1298, as each prediction
of the STFT output (129x1) is based on the current noisy
STFT vector and the previous 7 STFT vectors. The predictor
matrices and target vectors are normalized using their mean
and standard deviation values. The two fully connected lay-
ers have 1024 neurons each. Each fully connected layer is
succeeded by a batch normalization layer [34] and a rectified
linear unit (ReLU) layer [35]. The output layers consist of a
fully connected layer with a size of 129 (matching the target
vector) and a regression layer. The network is trained using
the adaptive moment estimation algorithm [36] with an initial
learning rate of 1 x 10~3, a mini-batch size of 128, and a
maximum number of epochs of 3. Additionally, a learning
rate drop factor of 0.9 and a learning rate drop period of 1 are
employed.
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Fig. 4. An overview of the MLP architecture. The MLP has an input
layer, two fully connected layers, and an output layer.

C. Cough Segmentation

The denoising algorithm removes background noises from
the recordings, however, the recordings can contain both cough
and non-cough sound events, both speech and non-speech.
This brings about the need for cough sound segmentation,
that is, detecting the start and end points of the cough sounds
in the denoised recordings, before performing cough sound
analysis. The cough segmentation network [29], depicted in
Fig. 5 with network architecture details in Table IV, operates
on raw audio waveforms, with each input sequence consisting
of 64 ms of audio data and a 25% overlap between sequences.
Given a sampling frequency of 16 kHz, each sequence contains
1024 data points. The SincNet model applies convolutional
operations independently to each time step of the audio signal
sequences. The SincNet architecture consists of three sets
of convolutional layers. The first layer employs sinc-based
convolutions with 80 filters of length 251. These sinc functions
implement bandpass filters with adjustable cutoff frequencies,
which are learned during training. The convolution operation
is carried out using a predefined function with a rectangular
frequency response [27]. The initial values of the cutoff fre-
quencies are set based on the equivalent rectangular bandwidth
[37], which is a psychoacoustic measure representing the width
of human auditory filters. The Sinc layer aims to optimize
the parameters of these bandpass filters within the neural net-
work framework. Consequently, this approach facilitates faster
convergence during training and yields improved performance
compared to standard CNNs [27].

The subsequent two convolutional layers are standard con-
volutions, utilizing 60 filters of length 5. Following each
convolutional layer, there is a batch normalization layer, a
leaky ReL.U layer [38] with a negative input multiplier of 0.2,
and a 1x3 max pooling layer. The stride for all convolutional
and max pooling layers is set to 1. Following the convolutional
layers, there are three fully connected layers, each with an
output size of 256. Batch normalization and leaky ReLU
layers follow each fully connected layer. A flatten layer is
then employed to reshape the output into vector sequences.
To capture bidirectional long-term dependencies between the
time steps of the sequence data, a BiGRU [29] is utilized.
This BiGRU layer learns the relationships in both the forward
and backward directions. The final layers of the network
consist of a fully connected layer, a softmax layer [39], and a
classification layer.

| Denoised audio signal in 64ms sequences |

'

[ Sinc:80@1x251 |

| Max Pool: 1x3 |
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Fig. 5. The SincNet-BiGRU architecture for cough segmentation.

D. Pneumonia vs Non-Pneumonia Cough Classification

As depicted in Fig. 1, the automatically segmented cough
signals are processed to extract two sets of features: hand-
crafted features and deep learning features.

Handcrafted Features: This study employs two types of
handcrafted features, namely cepstral and temporal-spectral
features. To compute these features, each segmented cough
signal is divided into frames of 25 milliseconds, with a 15-
millisecond overlap between adjacent frames. The cepstral
features used are mel-frequency cepstral coefficients (MFCCs)
[40], which are commonly employed in audio classification
tasks. MFCCs utilize frequency scales based on auditory
perception. In each frame, we calculate 13 MFCCs. A plot
of the MFCCs, as a heatmap, for waveforms of pneumonia
and non-pneumonia (bronchitis) coughs are shown in Fig. 2(c)
and (d), respectively. In addition, we compute the first and
second derivatives of the MFCCs [41]. This process results
in a 39-dimensional feature vector for each cough frame. To
represent these raw features, we employ the mean and standard
deviation statistical measures. If a recording contains only one
cough, these statistics are computed across all frames within
that cough. If a recording comprises multiple coughs, these
statistics are computed across all frames from all the coughs.
As a result, we obtain a 78-dimensional MFCC feature subset
for each recording.

The second subset of handcrafted features capture 15 tem-
poral and spectral characteristics of the cough signal, as
described in [22]. These features are the zero-crossing rate,
short-time energy, pitch, harmonic ratio, and 11 spectral char-
acteristics, which are the spectral crest, centroid, entropy, de-
crease, flux, flatness, kurtosis, skewness, roll-off point, spread,
and slope. Similar to MFCCs, these features are computed
in each frame and represented using the mean and standard
deviation statistical measures. Consequently, each recording is
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TABLE IV
DETAILS OF THE SINCNET-BIGRU ARCHITECTURE

Layer Type No. of Filters | Kernel | Stride | Output
Input 1x1024x1
Sinc 80 1x251 1x774x80
Batch Norm 1x774%x80
Leaky ReLU 1x774%x80
Max Pool 1x3 1 1x772x80
Convolution 60 I1x5 1 1x768x60
Batch Norm 1x768x60
Leaky ReLU 1x768x60
Max Pool 1x3 1 1x766x60
Convolution 60 1x5 1 1x762x60
Batch Norm 1x762x60
Leaky ReLU 1x762x60
Max Pool 1x3 1 1x760x60
Fully Connected 1x1x256
Batch Norm 1x1x256
Leaky ReLU 1x1x256
Fully Connected 1x1x256
Batch Norm 1x1x256
Leaky ReLU 1x1x256
Fully Connected 1x1x256
Batch Norm 1x1x256
Leaky ReLU 1x1x256
Flatten 256
BiGRU 512

Fully Connected 2

Softmax 2

Output 2

associated with a 30-dimensional temporal and spectral feature
subset.

Deep Learning Features: The deep learning feature set
comprises 128 VGGish feature embeddings obtained from
each cough signal. These embeddings are extracted using a
pretrained convolutional neural network designed for audio
classification [42]. The VGGish architecture draws inspiration
from the popular VGG networks used in image classification
tasks. It has been trained on a large dataset of YouTube au-
dio, generating 128-dimensional embeddings. To compute the
VGGish features, each cough signal is transformed into a mel-
spectrogram, as depicted in Fig. 2. While Fig. 2 displays the
mel-spectrogram of segmented cough signals, for input to the
VGGish network, the signals are either zero-padded or cropped
to a duration of 0.975 seconds before computing a 96 x 64 mel-
spectrogram. The resulting mel-spectrogram, which represents
the time-frequency characteristics of the cough signal, serves
as the input to the VGGish network for extracting the feature
embeddings. In the case of recordings containing multiple
coughs, the feature embeddings are averaged across all the

coughs.

The combined feature vector consists of 236 dimensions,
encompassing 78 MFCC features, 30 temporal and spectral
features, and 128 VGGish features. These features extracted
from cough signals are employed for binary classification,
distinguishing between pneumonia and non-pneumonia cases.
The classification task utilizes three different classifiers: ran-
dom forest (RF), support vector machine (SVM), and multi-
layer perceptron (MLP). In classification, we consider all the
features as input to the classifier but we also consider the most
discriminative features, identified through the application of z-
test and elastic net methods [43]. The MLP architecture is
similar to Fig. 4, but now performing classification instead of
regression. It consists of two hidden layers, each comprising
256 neurons and employing the rectified linear unit activation
function. The network is trained using adaptive moment esti-
mation with a learning rate of 3 x 102, a mini-batch size of
8, and a maximum number of epochs of 10.

E. Evaluation Metrics

The classification performance of the cough segmenta-
tion (cough vs non-cough) method and pneumonia vs non-
pneumonia cough classification method is evaluated using
sensitivity, specificity, accuracy, and F; score. These metrics
are computed as

Sensitivity = __rr (1)
TP+ FN

Speci ficity = 7TNT—1]—VFP (2

Aceuracy = 5 gzi 1 ?; +FN ©)

B =orp +2JZ§ +FN @

where TP, TN, FP, and FN represent the number of true
positives, true negatives, false positives, and false negatives,
respectively. We also use the area under the curve (AUC) of
the receiver operating characteristic (ROC) curve as a single
measure of classification performance.

For pneumonia vs non-pneumonia cough sound classifica-
tion, the positive and negative classes are pneumonia and non-
pneumonia, respectively. In the context of cough segmentation,
the positive and negative classes correspond to cough and non-
cough, respectively, and the metrics are computed similar to
[44]. The reference label for cough and non-cough is based on
manual segmentation, that is, we manually determined the start
and end points of the cough sounds in each recording by visual
analysis of its temporal waveform and the spectrogram rep-
resentation using Audacity (www.audacityteam.org), a digital
audio editing software. We perform frame-based classification
in cough segmentation [29] whereby each recording is divided
into 64 ms frames, with 25% overlap between adjacent frames,
and a frame is labeled as cough if 50% or more data points
in the frame contain cough and non-cough otherwise. When
training the cough segmentation algorithm, these frame labels
are used as the target or reference labels. When testing the
cough segmentation algorithm, these frame labels are used to
compute the evaluation metrics against the predicted labels.
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I1l. EXPERIMENTAL EVALUATION
A. Cough Denoising

The cough denoising algorithm is trained and validated on
the 300 recordings from the COUGHVID dataset using a
similar procedure described in an earlier study [24], however,
with multi-conditional training. We then evaluated the trained
network on the pneumonia and non-pneumonia cough sound
recordings. On average, the denoising algorithm improved the
SNR by 43.56%. The improvement in the SNR for different
noise levels is as follows: 117.38% improvement in SNR for
recordings with SNR in the range of 0 — 10 dB, 45.71%
improvement in SNR for recordings with SNR in the range of
10 — 20 dB, and 14.96% improvement in SNR for recordings
with SNR in the range of 20 — 30 dB. As such, the most
improvement in SNR is observed in recordings with high noise
levels.

In Fig. 6, we provide illustration of a noisy and denoised
cough recording waveform and their spectrogram represen-
tation. In this instance, the SNR improved from an estimated
15.21 dB to 23.54 dB. Visual analysis of the illustrations shows
that the denoising algorithm largely maintains the temporal
and spectral characteristics of the cough sounds while reducing
background noise.

B. Cough Segmentation

The SincNet-BiGRU classifies each 64 ms frame as a cough
or non-cough frame. Connected frames with the same label
are then categorized as cough or non-cough sound events.
We first use the pretrained SincNet-BiGRU network to clas-
sify the cough and non-cough sequences, without retraining
the network. Next, the performance of the SincNet-BiGRU
network is evaluated in five-fold cross-validation, whereby,
in each fold, frames from 80% of the pneumonia and non-
pneumonia recordings are used for fine-tuning the network
parameters and the frames from the remaining 20% of the
recordings are used for testing. For training and validating
the network using supervised learning and for computing the
performance metrics, we use manual annotation of the cough
sounds [22].

In Table V, we present the segmentation results using both,
the pretrained network and the fine-tuned network. An accu-
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Fig. 7. t-SNE visualization of the SincNet-BiGRU network activations
for cough vs non-cough classification.

racy of 0.7452, F1 of 0.5662, and AUC of 0.8442 are achieved
using the pretrained network, without any fine-tuning. This is
in contrast to an evaluation accuracy of 0.9496, F; of 0.8476,
and AUC of 0.9866 that could be achieved using this network
on the COUGHVID dataset [29]. We believe there are two
main reasons which could explain this discrepancy. Firstly,
the COUGHVID dataset is crowdsourced with most recordings
believed to be done in a home environment. While the dataset
contains some background noise, the noise level is not as high
as the dataset of pneumonia and non-pneumonia cough sounds
used in this work which has been recorded in a noisy hospital
environment. As such, both the noise environment and the
noise levels are different. Secondly, the COUGHVID dataset
comes from the adult population while the dataset used in this
work comes from the pediatric population. The sound of cough
is associated with the respiratory physiology but there are
distinct differences in respiratory physiology between children
and adults [45].

Using fine-tuning, we are able to improve the accuracy in
cough and non-cough frame classification to 0.8730 with F; of
0.7555 and AUC of 0.9498. This is an improvement of 17.15%
in accuracy, 33.43% in F1, and 12.51% in AUC over the results
using the pretrained network (without fine-tuning). As such,
the classification results are significantly improved after fine-
tuning as the network acclimatizes to a different recording
environment and a different population group.

Next, we examine the predictions of the SincNet-BiGRU
model for cough and non-cough frames in the test set by
employing t-distributed stochastic neighbor embedding (-
SNE) [46]. -SNE is a technique that maps high-dimensional
data, such as network activations, into two dimensions. The
t-SNE visualization, depicted in Fig. 7, demonstrates that z-
SNE is largely preserving the local structure of the data, that
is, data points with similar characteristics are grouped together
in the visualization. This implies that clusters or groups of data
points share common classes.
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TABLE V
COUGH SOUND SEGMENTATION RESULTS
. . . . Classification Results
Input SincNet-BiGRU Fine-Tuning
Sensitivity Specificity Accuracy Fq AUC
Denoised signal No 0.7735 0.7375 0.7452 0.5662 0.8442
Denoised signal Yes 0.9125 0.8622 0.8730 0.7555 0.9498

C. Pneumonia vs Non-Pneumonia Cough Classification

The evaluation of the proposed method for classifying
pneumonia vs non-pneumonia cough sounds involves a leave-
one-out cross-validation approach. In this approach, the fea-
tures from one subject are set aside for testing, while the
features and class labels from the remaining subjects are
used for training. This process is repeated for each subject
to ensure every individual’s data is used for testing once.
Within each iteration, the features are standardized using z-
score normalization. We report the results using the feature
selection technique that yielded the best overall performance.
In each fold, the discriminative features are determined based
on the training data. For the z-test and elastic net feature
selection methods, the discriminative features are chosen using
a p-value threshold of 0.05 and the minimum cross-validated
mean square error, respectively. The results for all classifiers
are presented using three feature sets: handcrafted features,
deep learning features, and a combined feature set.

We use leave-one-out cross-validation for the pneumonia
vs non-pneumonia classifiers (RF, SVM, and MLP) because
these classifiers are trained from scratch and using leave-one-
out cross-validation allows us to maximize the training data for
these classifiers. On the other hand, the cough segmentation
network (SincNet-BiGRU) was pretrained on the COUGHVID
dataset (Table III) and the network weights only required fine-
tuning on the pneumonia vs non-pneumonia dataset. Also,
training or fine-tuning the SincNet-BiGRU is much more time
consuming then training the RF, SVM, and MLP classifiers.
For these reasons we used 5-fold cross-validation for the cough
segmentation algorithm.

The results for pneumonia vs non-pneumonia cough sound
classification are presented in Table VI. With an accuracy of
0.6805, F; of 0.6824, and AUC of 0.7476 the best results
using the RF classifier are on the DL feature set. As such,
the DL features outperformed the handcrafted features with
RF classification and feature combination did not lead to im-
provement in the classification results. The feature dimension
of the DL feature set is the smallest among the three feature
sets and, in this case, the RF classifier seems to generalize
well on the small feature set.

Feature combination is once again seen to be ineffective in
improving the classification results with the SVM classifier.
However, unlike the RF classifier, the highest accuracy of
0.7278, F1 of 0.7262, and AUC of 0.7692 are achieved on
the handcrafted feature set, outperforming the DL features.
Also, the best results using the SVM classifier are higher than
the best results using the RF classifier.

When utilizing the MLP classifier with the handcrafted

and combined feature sets, we observe improvements in
all performance metrics. With the handcrafted feature set,
the MLP classifier attains an accuracy of 0.7396, marking
a relative enhancement of 11.60% compared to RF and a
1.62% improvement over SVM. The F; score reaches 0.7381,
showing a relative increase of 11.38% over RF and 1.64%
over SVM, while the AUC is 0.7771, indicating a relative
improvement of 7.16% over RF and 1.03% over SVM. On the
combined feature set, the MLP classifier achieves an accuracy
of 0.7633, signifying a relative improvement of 15.18% over
RF and 7.49% over SVM. The F; score is 0.7619, exhibiting
a relative increase of 14.28% over RF and 7.29% over SVM,
and the AUC reaches 0.7994, with a relative improvement
of 8.48% over RF and 4.41% over SVM. Consequently, the
MLP classifier surpasses the RF and SVM classifiers in per-
formance, and the best classification results are attained when
employing the combined feature set. Also, the classification
results of the MLP improves with feature combination and,
unlike the RF classifier, the MLP classifier is better able to
learn on the combined feature set.

Next, the MLP learnings, in this case the activations from
the second ReLU layer of the MLP network, for the pneumo-
nia and non-pneumonia cough sound features in the test set
are investigated using f~-SNE. The #-SNE visualization, Fig.
8, shows that cough features from the pneumonia and non-
pneumonia classes form visible clusters. This implies that the
MLP network understands the cough sound features and its
classes and is able to differentiate them. Furthermore, in Fig.
9, we present box plots for the most significant feature in both
the handcrafted feature set and the deep learning feature set,
which was identified based on the lowest p-value using the
t-test. Notably, VGGish feature embedding 62 emerges as the
most significant feature, followed by the standard deviation of
the 11" mel-frequency cepstral coefficient. MFCCs represent
different aspects of the spectral characteristics of the cough
sound, with the lower coefficients generally capturing the
overall shape and envelope of the spectrum and the higher
coefficients capturing the finer spectral details and rapid
changes in the spectrum. Our analysis shows that finer spectral
characteristics in cough sounds are important in distinguishing
pneumonia from other acute respiratory diseases.

MFCCs are one of the most commonly used features in
audio classification tasks. However, the time derivatives of
these static parameters were originally proposed for speech
classification tasks and their contribution in cough sound
classification hasn’t been evaluated. In Fig. 10, we plot the
sensitivity, specificity, and accuracy of MFCCs and its first
and second derivatives, evaluated separately, for pneumonia
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TABLE VI
COUGH SOUND CLASSIFICATION RESULTS INTO PNEUMONIA AND NON-PNEUMONIA
. . Classification Results
Feature Set Feature Selection Method| Classifier
Sensitivity | Specificity| Accuracy | Fi AUC
Handcrafted features None RF 0.7179 0.6154 0.6627 0.6627 0.7252
DL features T-Test RF 0.7436 0.6264 0.6805 0.6824 0.7476
Handcrafted + DL features T-Test RF 0.7308 0.6044 0.6627 0.6667 0.7369
Handcrafted features None SVM 0.7821 0.6813 0.7278 0.7262 0.7692
DL features Elastic Net SVM 0.7051 0.6044 0.6509 0.6509 0.7416
Handcrafted + DL features None SVM 0.7692 0.6593 0.7101 0.7101 0.7656
Handcrafted features T-Test MLP 0.7949 0.6923 0.7396 0.7381 0.7771
DL features None MLP 0.7179 0.6154 0.6627 0.6627 0.6844
Handcrafted + DL features T-Test MLP 0.8205 0.7143 0.7633 0.7619 0.7994
.10' t-SNE Plot of PN and Non-PN Cough Features VGGish[62] AMFCC[11] (Standard Deviation)
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Fig. 8. t-SNE visualization of MLP network activations for pneumonia
(PN) vs non-pneumonia (non-PN) cough classification.

vs non-pneumonia cough sound classification using MLP.
MFCCs on their own achieve an accuracy of 0.7101 followed
by the first derivatives with an accuracy of 0.6627 and the
second derivatives with an accuracy of 0.6331. As such,
while MFCCs are more discriminative of pneumonia and non-
pneumonia cough sounds then its derivatives, the derivatives
of MFCCs also carry discriminative characteristics and this
leads to improvement in classification performance when these
features are combined (Table VI). We also note that, unlike
other non-speech sounds, cough shares some similarities with
speech in terms of the physiological systems involved in the
generation process.

IV. DISCUSSION AND CONCLUSION

This work proposes a fully automated method of cough
sound analysis in classifying pneumonia and non-pneumonia
in children. The proposed method involves cough denoising,
cough segmentation, and cough sound classification. With
a sensitivity of 0.8205, specificity of 0.7143, accuracy of
0.7633, F1 of 0.7619, and AUC of 0.7994, these are the best
results of all the methods considered in this work. In addition,

Fig. 9. Box plots displaying the most significant feature (with the lowest
p-value) from each feature set.
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Fig. 10.  Sensitivity, specificity, and accuracy of MFCCs and its first
and second derivatives in pneumonia vs non-pneumonia cough sound
classification.

these results are only marginally lower than what could be
achieved when the cough sounds are manually segmented
[22]. The combination of sensitivity and specificity achieved in
our work is moderately to significantly better than what has
been reported using the WHO clinical algorithm to identify
pneumonia, as summarized in previous studies [6], [7].

In pneumonia vs non-pneumonia cough sound classifica-
tion, we studied two variations over earlier works. These are
based on neural networks, with the incorporation of feature
embeddings from a pretrained convolutional neural network
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and the use of MLP for classification. On the combined
feature set, where we achieve the best results using MLP,
we observe an improvement in accuracy, Fi, and AUC in
the range of 4.41% to 15.18% over the corresponding results
using RF and SVM. In addition, the inclusion of the deep
learning features provides an improvement in accuracy, Fi,
and AUC in the range of 2.87% to 3.22% over the results
using the handcrafted features only. As such, the use of
neural network methods helps us achieve better classification
results in detecting pneumonia from non-pneumonia using
cough sounds. In addition, the advantages of neural networks
over conventional methods in cough sound denoising and
segmentation have been demonstrated in earlier studies [24],
[29].

The proposed method of detecting childhood pneumonia
using automated cough sound analysis can be implemented
on smartphones and possibly find several applications. Errors
in diagnosing respiratory diseases are common in healthcare
settings [47], [48], [49]. The proposed method can provide
clinicians an additional tool to aid their decision making, such
as in triaging and primary healthcare. Deaths due to childhood
pneumonia are highest in remote communities where such a
tool would also be useful for screening for the disease. In
addition, the viruses and bacteria that cause pneumonia can be
contagious and visiting a physician can lead to other children
getting infected. The utilization of virtual healthcare has seen a
significant increase globally during the COVID-19 pandemic,
and this trend is widely anticipated to continue in the future
[50]. The proposed method can be integrated into telehealth
platforms to provide objective cough sound evaluation to the
physician during telehealth consultation.

However, our study does have certain constraints. Although
our dataset includes a larger number of subjects compared to
similar studies like [6], [18], it’s important to note that the non-
pneumonia group predominantly consists of individuals with
bronchitis. In our future research, we intend to further assess
our approach by incorporating a more diverse set of cough
recordings obtained from various acute pediatric respiratory
conditions. Also, to mitigate the losses due to MP3 conversion,
we analyzed the frequency content up to 8 kHz but the power
spectrum of pneumonia cough extends up to 20 kHz [6]. In the
future, we plan to use uncompressed audio formats or formats
with lossless compression to prevent loss of spectral content
due to lossy compression. In addition, in our work, there is
an average of less than 3 coughs per subject. In contrast, the
test dataset of two similar studies [6], [18] has 15 coughs
per subject while the dataset of another two studies [19], [20]
consists of 5 coughs per subject. Having more cough samples
per subject can potentially provide better estimate of feature
statistics, such as mean and standard deviation that we use in
our work. As such, in the future we plan to experiment with
greater number of cough samples per subject.

Furthermore, the proposed method has been only internally
validated. Validation of cough sound-based respiratory disease
detection algorithms on external or independent data can
be challenging, with a drop in classification performance
observed in diagnostic studies on acute pediatric respiratory
diseases [19], [20] and COVID-19 [51], [52]. Similar short-

comings have been observed in external validation of Al
prediction models in other medical applications as well, such
as in sepsis prediction using electronic health record data
[53] and image-based radiologic diagnosis [54]. Differences in
classification performance from internal validation to external
validation can be due to several reasons, including data het-
erogeneity [55] and variability in ground truthing [56]. It’s yet
to be determined how our proposed method will perform on
an external dataset, such as from a different healthcare setting.
In the future, we plan to perform such diagnostic studies using
techniques such as data standardization [55] and using expert
graders to reduce variability in ground truthing [56] to help
mitigate the shortcomings of previous studies.
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