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A B S T R A C T

Background: Distinguishing between productive (wet) and non-productive (dry) cough types is important for 
evaluating respiratory health, assisting in differential diagnosis, and monitoring disease progression. However, 
assessing cough type through the perception of cough sounds in clinical settings poses challenges due to its 
subjectivity. Employing objective cough sound analysis holds promise for aiding diagnostic assessments and 
guiding the management of respiratory conditions. This systematic review aims to assess and summarize the 
predictive capabilities of machine learning algorithms in analyzing cough sounds to determine cough type.
Method: A systematic search of the Scopus, Medline, and Embase databases conducted on March 8, 2025, yielded 
three studies that met the inclusion criteria. The quality assessment of these studies was conducted using the 
checklist for the assessment of medical artificial intelligence (ChAMAI).
Results: The inter-rater agreement for annotating wet and dry coughs ranged from 0.22 to 0.81 across the three 
studies. Furthermore, these studies employed diverse inputs for their machine learning algorithms, including 
different cough sound features and time–frequency representations. The algorithms used ranged from conven-
tional classifiers like logistic regression to neural networks. While the classification accuracy for identifying wet 
and dry coughs ranged from 78% to 87% across these studies, none of them assessed their algorithms through 
external validation.
Conclusion: The high variability in inter-rater agreement highlights the subjectivity in manually interpreting 
cough sounds and underscores the need for objective cough sound analysis methods. The predictive ability of 
cough-type classification algorithms shows promise in the small number of studies analyzed in this systematic 
review. However, more studies are needed, particularly those validating their models on independent and 
external datasets.

1. Introduction

Cough is a prevalent symptom of respiratory diseases and a common 
presenting condition in primary care settings globally [1]. It serves as a 
reflex mechanism to expel irritants from the respiratory system, with 
cough types broadly classified as productive (wet) or non-productive 
(dry). Wet coughs typically involve sputum production and may arise 
from infections, inflammation, or chronic conditions such as chronic 
obstructive pulmonary disease (COPD), whereas dry coughs can result 
from asthma or follow respiratory infections [2–4]. A dry cough has also 
been reported in the majority of COVID-19 patients [5]. In certain ill-
nesses, the cough may initially present as dry but evolve into a phlegmy 
or wet cough as the disease progresses and airway secretions increase 

[6].
Differentiating between cough types is important for diagnosing and 

monitoring respiratory diseases, understanding disease progression, and 
guiding treatment decisions [7]. For instance, studies have shown that 
recognizing wet cough characteristics in COPD patients can help identify 
exacerbations early, potentially preventing hospitalization [8]. Simi-
larly, distinguishing dry cough in asthma can aid in assessing disease 
progression and the efficacy of anti-inflammatory therapies [9]. How-
ever, subjective assessment methods in clinical practice, which rely on 
patient reporting or clinicians’ perception of sounds associated with 
airway secretions [10], have inherent limitations. Although bronchos-
copy [11] offers an alternative for evaluating airway secretions, it is 
invasive.
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Developing objective assessment techniques is therefore important 
to overcome the limitations of subjective evaluations and to ensure 
consistent and reliable classification of cough types across various 
healthcare settings. These methods aim to categorize cough types based 
on sound characteristics, potentially enabling more accurate diagnosis 
and treatment planning. Despite the potential significance of objectively 
evaluating cough types in clinical decision-making, there is a lack of 
comprehensive evidence syntheses on this topic. Consequently, we un-
dertook a systematic review to assess the capability of machine learning 
algorithms in predicting wet and dry cough types based on cough sound 
characteristics.

2. Methods

This systematic review adhered to the guidelines outlined by the 
preferred reporting items for systematic reviews and meta-analyses 
(PRISMA) [12].

2.1. Search strategy

We conducted a systematic literature search across the Scopus, 
Medline (Ovid), and Embase (Ovid) databases on March 8, 2025. The 
search utilized the following terms across all three databases: (“wet” OR 
“dry” OR “productive”) AND (“cough”) AND (“machine learning” OR 
“deep learning” OR “artificial intelligence” OR “feature extraction” OR 
“accuracy” OR “classification”). Searches were performed in English, 
targeting titles, abstracts, and keywords. To maximize results, no re-
strictions were applied to publication date or study location, and the 
search terms were intentionally broad. Gray literature was not included 
in this systematic review.

2.2. Inclusion and exclusion criteria

This systematic review included studies that employed cough sound 
features and machine learning algorithms to differentiate between wet 
and dry cough types. To be eligible, studies were required to incorporate 
cross-validation, training and testing sets, or testing sets at a minimum. 
This criterion was established to ensure that models lacking resampling 
procedures, which may fail to generalize effectively to independent 
datasets, were excluded. Studies with small sample sizes (≤30) were also 
excluded due to the risk of overfitting, which can result in inflated and 
highly variable predictive outcomes [13].

No restrictions were placed on the age or gender of the study pop-
ulations; however, studies that failed to report demographic data were 
excluded. Additionally, studies without sufficient information to calcu-
late sensitivity, specificity, or confidence intervals were excluded. Ab-
stracts and conference proceedings were included only if they provided 
adequate data directly or through associated publications. If a pre-
liminary study was succeeded by a more comprehensive version, only 
the latter was included in the review.

2.3. Study selection

Search results were imported into EndNote X9, and duplicate entries 
were removed. The remaining records were transferred to Microsoft 
Excel for screening. R.V.S. and H.X. independently reviewed titles and 
abstracts to assess eligibility. Studies deemed eligible by either reviewer 
were subjected to full-text screening. Reasons for excluding studies after 
full-text assessment were documented in Excel. Discrepancies between 
reviewers were resolved through discussion, with consensus achieved 
for each study.

2.4. Data extraction and analysis

R.V.S. extracted methodological, demographic, and outcome data 
from the included studies, which were then reviewed by H.X. Any 

discrepancies were resolved through discussion. Extracted information 
included study characteristics (e.g., first author, publication year, 
country, study design, sample size, feature extraction methods, feature 
selection techniques, machine learning classifiers, and cough segmen-
tation methods), population demographics (age, gender), respiratory 
disease diagnosis, inter-rater agreement, and performance metrics 
(sensitivity, specificity, accuracy, and their corresponding 95% confi-
dence intervals).

For studies employing multiple feature extraction, feature selection, 
or machine learning classifiers, all relevant data were extracted. When 
accuracy and confidence intervals were not explicitly reported, they 
were calculated using available data. Accuracy was derived by dividing 
the number of correct classifications by the overall sample size. Confi-
dence intervals were calculated using Newcombe’s method [14]. Per-
formance metrics were rounded to the nearest whole percentage for 
consistency.

Meta-analysis was not conducted due to the limited number of 
studies within each population group.

2.5. Quality assessment

Quality assessments were conducted by R.V.S. using the checklist for 
the assessment of medical AI (ChAMAI) [15], which were subsequently 
reviewed by H.X. Any discrepancies were resolved through discussion. 
The ChAMAI checklist, developed by the IJMEDI, evaluates the quality 
of medical artificial intelligence studies, distinguishing between high- 
quality machine learning research and basic data-mining studies.

The checklist consists of six dimensions: problem understanding, 
data understanding, data preparation, modeling, validation, and 
deployment, encompassing a total of 30 questions. Each question was 
rated as OK (adequately addressed), mR (sufficient but improvable, 
minor revision needed), or MR (inadequately addressed, major revision 
needed). Scores were assigned as follows: 2, 1, and 0 for high-priority 
questions and halved for low-priority questions. The maximum 
possible score was 50, with quality classified as low (0–19.5), medium 
(20–34.5), or high (35–50) [16,17]. All eligible studies were included 
for analysis regardless of their quality assessment outcomes.

3. Results

3.1. Search results

The process of identifying eligible studies is depicted in the PRISMA 
flow diagram shown in Fig. 1. Searches conducted in Scopus, Medline 
(Ovid), and Embase (Ovid) yielded 639, 179, and 823 results, respec-
tively, totaling 1641 studies. After removing 551 duplicate entries, 1090 
studies underwent title and abstract screening. During this phase, 1058 
studies were excluded, leaving 32 studies for full-text review. Subse-
quently, 29 studies were excluded after full-text screening, resulting in 3 
studies meeting the inclusion criteria. These studies underwent quality 
assessment and were included in both qualitative synthesis and quan-
titative analysis.

3.2. Study characteristics

Table 1 provides an overview of the included studies [18–20] and 
their characteristics. Data collection for one study occurred in Indonesia 
[18], another in the United States [19], while the third study [20] 
involved crowdsourced data from multiple countries. One study [18] 
focused on the pediatric population (ages 0–15 years), while the others 
targeted adolescents and adults (ages 18–68 years [19] and 14–60 years 
[20]). The sample sizes were 78 [18], 131 [19], and 88 [20] partici-
pants, respectively.
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3.3. Data recording

One study [18] recorded cough sounds using bedside non-contact 
microphones (Rode NT3) in a hospital setting. In contrast, the remain-
ing studies used smartphones for data collection. For one study [20], the 
data was crowdsourced, implying varied recording environments. The 
recording environment for the second smartphone-based study [19] was 
not specified.

3.4. Respiratory disease

In the pediatric study [18], cough types were associated with con-
ditions such as pneumonia, bronchitis, asthma, rhinopharyngitis, and 
other respiratory diseases. In the adolescent and adult studies [19,20], 
coughs were linked to asthma, COPD, COVID-19, symptomatic COVID- 
19, and healthy cases.

3.5. Annotation

Subjects contributed one or more cough samples. Two studies 
[18,20] used clinical experts to annotate cough types based on auditory 
perception. In [18], each cough was labeled as wet or dry by two scorers, 
whereas in [20], each recording was labeled by up to four scorers.

The third study [19] utilized crowdsourced annotations in a two- 
stage process: initial labeling by two scorers, followed by resolution of 
disagreements and wet cough confirmations by an additional four 
scorers. The scorers’ clinical expertise was unclear.

3.6. Cough data

Only one study [20] employed automated segmentation for cough 
sounds, using the signal envelope to define start and end points [21], 
and classifying events via cochleagram representations with convolu-
tional neural networks (CNNs). The other two studies relied on manual 

Fig. 1. PRISMA flow diagram of included studies using cough sound features and machine learning to differentiate between wet and dry cough.

Table 1 
Overview of the studies included in the systematic review.

Study Reference Country No. of subjects 
(coughs)

Age 
Range 
(years)

Respiratory 
Disease

Method Cough 
Segmentation

Swarnkar (2013) 
[18]

Indonesia 78 (536) 0–15 Pneumonia 
Bronchitis 
Asthma 
Rhinopharyngitis 
Others

Number of annotators: 2 
Cough features: BGS, NGS, FF, P, LogE, ZCR, 
Kurt, MFCC 
Feature selection: p-value 
Classifier: LR

Manual

Nemati (2020) 
[19]

United States 131 (5971) 18–68 Asthma 
COPD 
Healthy

Number of annotators: 2 
Cough features: OpenSmile toolbox, custom 
features 
Feature selection: correlation 
Classifier: RF

Manual

Sharan (2022) 
[20]

Multiple 
(crowdsourced)

88 (396) 14–60 COVID-19 
Symptomatic 
Healthy 
Unknown

Number of annotators: 4 
Cough features: cochleagram 
Classifier: CNN

Automatic

BGS – bispectrum score, CNN – convolutional neural network, FF – formant frequencies, Kurt – kurtosis, LogE – log energy, LR – logistic regression, MFCC – mel- 
frequency cepstral coefficients, NGS – non-Gaussianity score, P – pitch, RF – random forest, ZCR – zero-crossing rate.
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segmentation. The cough sample sizes were 536 [18], 5971 [19], and 
396 [20].

3.7. Cough features

Mel-frequency cepstral coefficients (MFCCs) were experimented 
with in all studies. In [18], 66 features, including MFCCs, bispectrum 
scores, non-Gaussianity scores, formant frequencies, log energy, zero- 
crossing rate, and kurtosis, were analyzed. Study [19] extracted 1597 
features using the OpenSmile toolkit [22] and custom features. Study 
[20] experimented with multiple feature sets but primarily utilized 
cochleagram analysis.

3.8. Classifiers

Logistic regression (LR) was experimented with in all studies. While 
[18] exclusively relied on LR, the other studies [19,20] also employed 
random forests and support vector machines. Study [20] further utilized 
shallow CNNs for analyzing time–frequency characteristics, mitigating 
overfitting due to the small dataset.

3.9. Feature selection

Each study applied distinct feature selection methods. Study [18] 
used p-values of LR coefficient estimates, while [19] applied correlation 
analysis. Study [20] directly used cochleagram representations with 
CNNs, bypassing feature selection, although t-tests were used for base-
line methods.

3.10. Data balancing

To address class imbalance, study [19] used undersampling to 
equalize class sizes. Study [20] employed the synthetic minority over-
sampling technique (SMOTE) [23] to augment the minority class.

3.11. Cough and subject classification

All studies performed binary classification, distinguishing between 
wet and dry coughs. Study [20] labeled entire recordings, assigning all 
coughs within a recording the same classification. The prediction scores 
of individual coughs were averaged to classify recordings.

3.12. Inter-rater agreement and diagnostic performance

Table 2 summarizes the annotation and evaluation results. Inter- 
rater agreement, measured using the kappa statistic, ranged from 0.26 
to 0.81 across two scorers and 0.22–0.38 for three scorers [20]. Agree-
ment among four scorers was 0.37 [19] and 0.24 [20].

Validation methods varied: two studies [19,20] used k-fold cross- 
validation, while [18] split the dataset into training, validation, and 
test sets. Sensitivity ranged from 84–100%, specificity from 76–86%, 
and accuracy from 78–87%.

3.13. Study quality

Detailed quality assessment results are in the Supplementary File. 
Table 3 summarizes individual study scores: one study [18] scored 39, 
another [19] scored 35.5, and the third [20] scored 34.5. On average, 
the studies achieved a score of 36.3, indicating two were of high quality 
and one of medium quality. Fig. 2 illustrates the distribution of re-
sponses across high- and low-priority items.

4. Discussion

This paper outlines the methodology used to conduct a systematic 
review of research investigating the detection of wet and dry coughs 

through analysis of cough sound characteristics and machine learning 
techniques. It also highlights important trends observed during the 
analysis of the included studies. Early investigations utilized traditional 
sound recording setups, while recent studies have adopted smartphones 
for recording, coupled with crowdsourced data collection and annota-
tion methods. Furthermore, there has been a shift from conventional 
feature engineering and machine learning approaches in earlier studies 
to the use of neural networks in the most recent study, which demon-
strated comparable performance even with relatively small datasets.

Across all included studies, we observed significant variance in inter- 
rater agreement for the manual annotation of wet and dry cough types. 
This highlights the subjectivity in interpreting wet and dry cough sounds 
and emphasizes the need for objective methods of cough type analysis.

The limited number of studies included in this systematic review 
poses challenges in discerning long-term trends in quality assessment. 
However, the overall quality scores of the studies mostly fell within the 
upper bounds of medium quality or were rated as high quality. Factors 
contributing to reduced scores included cases where index test results 
were reported only during cross-validation, without a distinct test set. 
While all studies adequately addressed (OK) 70% or more of the high- 
priority requirements, only 40% or fewer of the low-priority re-
quirements were adequately addressed, with 40% of these requiring 
major revisions (MR). Additionally, deployment performance was 
notably deficient across all studies, with scores not exceeding 31.25% of 
a maximum possible score of 8. Moreover, none of the studies underwent 
external validation, such as testing on data from different healthcare 
settings.

The choice of feature selection methods impacted the performance of 
machine learning models. For the LR classifier, selecting features based 
on p-values yielded moderate performance (sensitivity = 84%, speci-
ficity = 76%) [18], reflecting the method’s effectiveness in identifying 
statistically significant predictors. In contrast, using feature correlation 
improved performance in another study (sensitivity = 88%, specificity 
= 86%) [19], suggesting that prioritizing independent, less correlated 
features enhances model accuracy. Meanwhile, the cochleagram input 
fed directly into the CNN achieved the highest sensitivity (100%) but 
slightly lower specificity (83%) [20], demonstrating CNNs’ ability to 
handle raw, complex data without explicit feature selection. This com-
parison underscores the importance of aligning feature selection tech-
niques with model architecture and data characteristics to optimize 
outcomes.

Among the included studies, only one [20] utilized neural network 
classification, despite having the smallest subject sample size. This study 

Table 2 
Summary of the results for the included studies.

Study 
Reference

No. of subjects 
(coughs)

Inter-rater 
agreement 
(Kappa)

Performance 
[95% CI] (%)

Training/ 
Validation

Test

Swarnkar 
(2013) [18]

60 (310) 18 
(117)

0.55 Sensitivity = 84 
[67–93] 
Specificity = 76 
[66–83] 
Accuracy = 78 
[69–84]

Nemati 
(2020) [19]

131 (5971) – 0.81 (First) 
0.37 (Second)

Sensitivity = 88 
[86–90] 
Specificity = 86 
[85–87] 
Accuracy = 87 
[86–87]

Sharan 
(2022) [20]

88 (396) – 0.26–0.59 
(Two) 
0.22–0.38 
(Three) 
0.24 (Four)

Sensitivity = 100 
[68–100] 
Specificity = 83 
[73–89] 
Accuracy = 84 
[75–90]
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relied on data augmentation and employed a shallow CNN to mitigate 
overfitting. Advanced pretrained CNN architectures designed for audio 
classification, such as YAMNet and VGGish [24], show promise for 
improved performance. Moreover, recent advancements in learning 
directly from one-dimensional raw audio signals, such as SincNet [25], 
may further enhance performance. Although neural networks introduce 
complexity, they provide the potential for effective feature engineering 
and learning without extensive signal transformation, enabling the 
capture of nonlinear characteristics.

This systematic review has several limitations. Only three studies 
met the inclusion criteria, precluding the possibility of conducting a 
meta-analysis due to the limited number of studies and the diversity 
among population groups. Meta-analysis is generally discouraged for 
such small datasets because it increases the risk of statistical inaccura-
cies and reduces robustness. Small sample sizes tend to produce wide 
confidence intervals, diminishing the reliability of effect estimates [26]. 
Furthermore, the inclusion of only a few studies increases the potential 
for publication or selective reporting bias, potentially skewing results 
toward individual study outcomes rather than providing an accurate 
summary of the evidence [27].

Additionally, the heterogeneity in study populations and methodol-
ogies further complicates aggregation, making it inappropriate to syn-
thesize results quantitatively through meta-analysis [28]. The three 
studies represent a mixture of pediatric (1 study) and adult (2 studies) 
populations, highlighting challenges in combining these datasets. In 
clinical practice, respiratory diseases in children and adults are often 
studied and managed separately due to key physiological and clinical 
differences. For example, children are more prone to conditions like 
bronchiolitis, while adults are more likely to develop chronic diseases 
such as COPD. Differences in airway structure, immune response, and 
disease progression necessitate distinct diagnostic and treatment ap-
proaches for these age groups [29]. Combining pediatric and adult data 
into a single meta-analysis could obscure these differences and poten-
tially lead to misleading conclusions.

The studies analyzed primarily focus on cough types associated with 
a limited range of respiratory diseases, such as pneumonia, asthma, 
COPD, and COVID-19. The scarcity of relevant studies highlights the 
nascent stage of research into cough type detection using sound analysis, 
emphasizing the need for further exploration in this area, particularly in 
light of the COVID-19 pandemic. Another limitation across the included 

studies is the lack of external validation, a challenge commonly 
encountered in AI applications in healthcare [30].

Despite these limitations, the studies provide important insights that 
can inform future research designs, emphasizing the importance of data 
standardization [31] and the reduction of subjectivity in ground truth-
ing [32]. The insights derived from this systematic review, covering 
aspects such as data acquisition, annotation, cough sound features, 
time–frequency representation, and machine learning techniques, offer 
a valuable foundation for future studies.

Advancing the practical application of cough sound analysis algo-
rithms is important for driving research in this area. The collection of 
cough audio data is relatively straightforward, as many devices, both in 
clinical and non-clinical settings, including personal smartphones, can 
be utilized for this purpose. Demonstrating the real-world effectiveness 
of these algorithms could stimulate further research and deeper explo-
ration in this domain. For instance, studies have developed smartphone- 
based algorithms for continuous cough monitoring in hospital wards, 
showing high sensitivity and specificity in detecting coughs [33]. 
Additionally, smartphone-based cough detection algorithms have been 
validated in pediatric populations, demonstrating strong correlations 
between automated and manual cough counts [34]. Furthermore, 
smartphone-based algorithms have been developed to identify acute 
exacerbations of asthma by analyzing cough sounds and patient- 
reported symptoms, achieving high agreement with clinical diagnoses 
[35]. These examples emphasize the feasibility and potential of imple-
menting machine learning algorithms in real-world settings, thereby 
encouraging further research and application in this field.

Also, the integration of AI in medical diagnostics necessitates 
adherence to regulatory frameworks that ensure safety and efficacy. 
Notably, the European In Vitro Diagnostic Regulation (IVDR) explicitly 
includes software within its scope, presenting challenges for in vitro 
diagnostic devices that utilize machine learning algorithms for data 
analysis and decision support. This inclusion highlights the need for 
explainable AI methods that empower biomedical professionals to take 
responsibility for their decisions.

Explainable AI techniques, such as layer-wise relevance propagation, 
can interpret the specific input features influencing a model’s output, 
thereby enhancing transparency and trustworthiness [36]. The concept 
of causability extends this by providing metrics to assess the quality of 
explanations produced by AI systems [36]. Incorporating these 

Table 3 
Quality assessment scores based on the ChAMAI checklist.

Study Reference Problem Understanding 
(10)

Data Understanding 
(6)

Data Preparation 
(8)

Modeling 
(6)

Validation 
(12)

Deployment 
(8)

Total 
(50)

Swarnkar (2013) 
[18]

10 6 7 6 7.5 2.5 39

Nemati (2020) [19] 5.5 6 8 6 7.5 2.5 35.5
Sharan (2023) [20] 5.5 5 8 6 7.5 2.5 34.5

Fig. 2. Percentage of OK (adequately addressed), mR (sufficient but improvable, minor revision needed), and MR (inadequately addressed, major revision needed) 
within both high-priority and low-priority requirements.
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methodologies is important to demonstrate scientific validity, as well as 
analytical and clinical performance, for AI-based in vitro diagnostic 
devices. This aligns with the IVDR’s requirements and supports the 
development of trustworthy AI in medical diagnostics.

In conclusion, the small number of studies included in this review 
underscores the early stage of research into cough sound analysis for 
determining cough types. Nevertheless, the promising diagnostic pre-
cision observed highlights its potential as a tool for assessing respiratory 
diseases, which affect millions worldwide. The findings from this sys-
tematic review provide valuable insights for future study designs and 
will benefit various stakeholders, including regulatory bodies, technol-
ogy developers, engineers, data scientists, and clinicians.

Summary Points: 

• Reviews the current state of automated cough sound analysis for 
detecting wet and dry cough types, emphasizing its potential as a 
diagnostic tool.

• Examines important components including data collection methods, 
annotation processes, signal processing techniques, machine 
learning approaches, and performance evaluation metrics.

• Identifies significant variability in inter-rater agreement, under-
scoring the subjectivity inherent in manual cough sound interpre-
tation and the need for objective analysis methods.

• Outlines key challenges and research gaps, providing actionable in-
sights and directions for advancing this emerging field.
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